Gravitational Origin for Neutrino Masses

Hooman Davoudiasl

High Energy Theory Group, Brookhaven National Laboratory

Pheno 2020, University of Pittsburgh, May 4-6, 2020
Introduction:

- Open fundamental questions unexplained in Standard Model (SM):
 - Neutrino masses, $m_\nu \lesssim 0.1$ eV, implied by neutrino flavor oscillation
 - Dark matter (DM)
- DM: only gravitational evidence, many possibilities at present
- Neutrino masses: a few ideas
 - One interesting idea is seesaw mechanism
 - Ultra heavy “right-handed neutrinos” ν_R, as heavy as $\sim 10^{14}$ GeV
 - ν_R, uncharged under SM, largely inaccessible to experiments
 - Seesaw: Majorana $m_\nu \rightarrow$ rare $0\nu\beta\beta$ decay, yet to be observed
 - Alternatively, Dirac neutrino masses: very small Yukawa couplings $\lesssim 10^{-12}$
This Talk:

- Tiny m_ν: zero by global symmetry $U(1)_g$
 - Spontaneously broken, but only gravitationally mediated
- Quantum gravity expected to violate global symmetries explicitly
 - Black holes destroy global charges
 - Wormholes transport global charges “elsewhere”
 - More generally “gravitational instantons” corresponding to action S
 - Axion from spontaneous breaken $U(1)_g$ gets mass from gravitational instantons
- Right-handed neutrinos, possibly from entirely different sector
 - All fields could be coupled through gravitational interactions
- Organizing principles:
 - $U(1)_g$ preserving operators possibly suppressed by powers of $M_{Pl} \approx 1.2 \times 10^{19}$ GeV
 - Transition between vacua with charge difference ΔQ suppressed by $\propto e^{-\Delta QS}$

Caveats & Comments:

- Definite models require knowledge of quantum gravity
- Qualitative inferences from string theory, semi-classical treatments
- Our work has some elements in common with:
 - Froggatt-Nielsen models of quark masses (1979)
 - Majoron models, to explain ν_R masses with a broken global symmetry \rightarrow axion

 Chikashige, Mohapatra, 1981

- Gravitational global symmetry breaking has been considered in Majoron models
 - Often only powers of M_{Pl} considered

 E.g. Rothstein, Babu, Seckel, 1993

 - We require suppression by $e^{-\Delta Q S}$, and possible Planck suppression

- Arguments based on typical string constructions yield:

 $$S \sim 2\pi/\alpha_G$$

 - α_G of order grand unified gauge coupling

 - We take: $1/30 \lesssim \alpha_G \lesssim 1/20 \Rightarrow e^{-S} \sim 10^{-82} - 10^{-55}$

 Hui, Ostriker, Tremaine, Witten, 2016
A Minimal Model:

- To generate Dirac masses, introduce scalar Φ
- $U(1)_g$ charges: $(Q_g(\Phi), Q_g(L), Q_g(\nu_R)) = (1, -2, -3)$
- We can then write down gravitational coupling, assuming $O(1)$ coefficient
 \[O_5 \sim \frac{\Phi H^* L \nu_R}{M_{Pl}} \]
- To get $m_\nu \sim 0.1$ eV we then need $\langle \Phi \rangle = \frac{\phi_0}{\sqrt{2}} \sim 10^7$ GeV with $\Phi = \frac{\phi + \phi_0}{\sqrt{2}} e^{ia/\phi_0}$
- Gravitational “instantons” generate potential for axion a

\[V_a \sim -e^{-S} M_{Pl}^4 \cos \frac{a}{\phi_0} \Rightarrow m_a^2 \sim e^{-S} M_{Pl}^4 \frac{a^2}{\phi_0^2} \Rightarrow 10^{-10} \text{ GeV} \lesssim m_a \lesssim 3 \times 10^3 \text{ GeV} \]

- Axion coupling to neutrinos
 \[g_a a \bar{\nu}_5 \gamma_5 \nu = \frac{\langle H \rangle}{\sqrt{2} M_{Pl}} \frac{a}{\phi_0} \bar{\nu}_5 \gamma_5 \nu = \frac{m_\nu}{\phi_0} a \bar{\nu}_5 \gamma_5 \nu \]
- Axion lifetime
 \[\tau = \frac{8\pi}{g_a^2 m_a} \sim 10^{13} \text{ s} \left(\frac{20 \text{ MeV}}{m_a} \right) \left(\frac{10^{-17}}{g_a} \right)^2 \]
 \[t_{CMB} \sim 10^{13} \text{ s} \]
Cosmological Constraints:

- If fraction of DM f with lifetime $t_{CMB} \lesssim \tau \lesssim H_0^{-1}$ decays into dark radiation:

 $$\text{CMB and matter power spectra } \Rightarrow f \lesssim 0.038 \quad (95\% \text{ CL})$$

 Poulin, Serpico, Lesgourgues, 2016

- Axion initial energy density $\sim m_a^2 a_i^2$; a_i initial amplitude of oscillations

- Fraction f of DM in unstable axion by $T_{eq} \sim 1$ eV (radiation-matter equality)
 - Oscillation commences when m_a is of order Hubble parameter

$$f \sim a_i^2 \left(\frac{g_*}{M_{Pl}^2} \right)^{3/4} \left(\frac{\sqrt{m_a}}{T_{eq}} \right)$$

Values above dashed line excluded (95% C.L.); $a_i = \phi_0$ and $m_a \gtrsim 20$ MeV corresponds to $t \lesssim t_{CMB}$
• Neutrino flux from $a \rightarrow \nu \bar{\nu}$:

$$F_0^\nu \sim f \frac{\rho_{DM}}{m_a}$$

- For $\tau \gtrsim t_{CMB}$ (i.e. $m_a \lesssim 20$ MeV) $\Rightarrow F_0^\nu > 20$ cm$^{-2}$ s$^{-1}$.

• Typical neutrino energy

$$E_0^\nu \sim \frac{m_a}{2} \left(\frac{\tau}{t_U} \right)^{2/3}$$

- For $m_a \lesssim 20$ MeV $\Rightarrow E_0^\nu \lesssim 10$ keV (challenging to detect)

• CMB and local measurements of present Hubble parameter disagree

- Potentially at $\gtrsim 4\sigma$
 Riess, Casertano, Yuan, Macri, Scolnic, 2019

- Perhaps systematic effects, but could be new physics

• A decaying DM component could help address the tension

 E.g., Berezhiani, Dolgov, Tkachev, 2015

- Minimal model example:

 • $f \ll 1$ [larger ϕ_0 (smaller dim-5 coefficient) can enhance f]

 • Requires another, sufficiently stable, DM component

• Expanded models (with more global symmetries) could have broader phenomenology and more accessible signals
Concluding Remarks

- Small neutrino masses may be due to a global $U(1)$ symmetry and weak gravitational (Planck-suppressed) coupling
- Global symmetries are generically expected to be broken by non-perturbative gravitational processes: microscopic black holes, wormholes, instantons, . . .
- Possible that “right-handed neutrinos” separate from SM sector
 - However, gravity mediates interactions among all types of fields
 - Violation of global symmetry with suppressed instanton amplitude
- Generic feature: axions
 - Gravitational instantons expected to generate axion mass
- Axions decaying into neutrinos a typical expectation
- Could leave an imprint on cosmology (possibly address Hubble tension)
- Extensions: could invoke more than one global $U(1)$