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• QCD Axion Dark Matter is produced after a late time phase transition 
by two (unequal) effects: cosmic strings and parametric resonance

• Viable production mechanism for low values of fa – as low as 109 GeV 
for certain couplings to the Standard Model 

• Axion dark matter is warm and should lead to observable signals in 
21cm WDM studies

• Parameter space of very low fa values leads to rare Kaon decays 

Results
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The Model
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The Model: Late Time Phase Transition
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The Model: Late Time Phase Transition
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• First Order Phase Transition?
• No – numerical analysis finds that the PT 

proceeds via phase mixing [5] :
• Before bubbles form, thermal 

fluctuation can bump field from 
origin

• Symmetric and asymmetric phases 
coexist and the PT completes at* 



• The late time phase transition can also be cast as the condition

• This hierarchy is natural in supersymmetric scenarios where      is 
stabilized by higher dimensional interactions:

• We assume that the potential energy dominates and a period of 
thermal inflation occurs:

Potential & Thermal Inflation
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Axions from Cosmic Strings 
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• After phase transition, cosmic strings form with approximate energy density

• Energy should be lost producing axions with momenta            . However, this 
population is subdominant to parametric resonance



• Qualitatively: 

For certain values of k, some solutions that exponentially grow
• Decompose the field P = s+ia and get equations of motion

• Oscillating saxion background:

• Axion modes:

unstable modes grow as 

Axions from Parametric Resonance
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• The dominant band is 

• Axion growth continues until

• Thus we get a population of PR produced axions:

• Note that in this scenario, parametric resonance is occurring without 
the large field displacements

Axions from Parametric Resonance
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• Neglecting the axions produced by the cosmic strings, the axion yield 
is 

• To get the observed dark matter abundance, the reheat temperature 
must be at least

Axions as Dark Matter
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• The thermalization rate for the axion satisfies 

so late time phase transition is critical!
• Assuming DM abundance, axion velocity can be expressed as 

which must satisfy

giving bound

Thermalization & Warmness
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• We consider n=3 for definiteness
• The slanted, dashed green lines are 

contours for the axion velocity at 
T = 1 eV

• The region under the dashed orange 
curve is unconstrained if we are in the 
trapping regime

• It would appear that fa = 109 GeV is 
ruled out. However, this is too strong a 
statement given the uncertainty in the 
supernovae constraints [4].

Parameter Space
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• Supernovae Constraints & the Trapping 
Regime

• Large Saxion-Higgs coupling can prevent efficient 
energy loss as the saxions get “trapped”

• Relativistic Degrees of Freedom
• In the trapping regime, saxion can be in thermal 

equilibrium with electrons even after the 
neutrinos decouple.

• Thus the depletion of saxion energy heats up the 
photons, resulting in Neff < 3

• Assuming the neutrinos suddenly decouple at T = 
2 MeV, the saxion mass  must satisfy
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• 21 cm lines & structure
• High axion velocity -> warm dark matter scenario
• Future observations of the 21cm should probe 

mwdm < 10-20 keV, which corresponds to v > 10-5. 
• Our parameter space will be explored.

• NA62 & KLEVER
• Assuming a large saxion-Higgs coupling, one gets 

rare Kaon decays

Experimental Signatures
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• QCD axion dark matter can be produced by a late time phase 
transition

• Two mechanisms contribute – early cosmic string network dynamics and 
parametric resonance. Parametric resonance dominates over the axions from 
cosmic strings

• Features:
• The parametric resonance does not require large field displacement, in 

contrast to previous scenarios
• Low values of the axion decay constant are permitted, especially if large 

saxion-Higgs mixing is introduced or one relaxes supernovae bounds.
• The axion dark matter is warmer than other scenarios – should leave 

detectable imprints on structure formation visible in future 21 cm line studies
• If the saxion is in the trapping regime, there should be signals from rare Kaon 

decays at the NA62 and KLEVER experiments.

Conclusions
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• Stellar Cooling
• The axion coupling to electrons and nucleons can give rise to rapid cooling in 

stars
• For Red Giant and Horizontal Branch stars, the energy loss rate due to axions 

must be less than 

• Supernovae - 1987A
• The energy loss for new particles in supernovae is constrained by the 1987A 

observations to be

• However, there are is at least an O(10) degree of uncertainty regarding this 
constraint [4]

Back Up Slide: Stellar Constraints
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• The saxion must be thermalized at or above TDM. We could consider 
a coupling between      and a new pair of fermions as  

• Then the saxions would thermalize at a rate                     , which leads 
to a reheat temperature 

• If the fermions have SM charges, μ must be greater than 100 GeV. 
This results in a reheat temperature that is larger than TDM.

• To get the right reheat temperature, one can consider coupling to SM 
particles 

Back Up Slide: Reheating
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• The thermalization rate for the axion is

• During matter domination era of saxion oscillations,                                  

• The energy density of the thermal bath never exceeds that of the 
saxion, so

• The late time phase transition is critical!

Back Up Slide: Thermalization Details
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• Consider a Weyl fermion that decouples while relativistic and dilutes 
later:

• Warm dark matter mass bound mWDM > 3.3 keV gives velocity bound  
v < 10-4 at T = 1 eV

Back Up Slide: Velocity Bound Details
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• Axion Warmness
• Redshift Invariant combination:

• Along with observed dark matter abundance gives

which must satisfy

• This gives us a bound on the saxion mass:

Back Up Slide: Warmness Details
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• Numerical analysis of [5] indicates that the phase transition may occur 
at a temperature       that is within a few per cent of 

• Giving string density 

• And axion number density and yield
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The Model: Axions from the Early String Network 
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