Constraining the Higgs boson self-coupling in a combined measurement of single and double Higgs boson channels at the ATLAS experiment

ROMA

PHENO2020 - May 4-6, 2020

University of Pittsburgh

Z= - 4 Fre FMV

Physics motivation

- Measuring the Higgs-boson self-couplings is a crucial validation of the Brout-Englert-Higgs (BEH) mechanism.
- $+i\psi\psi\psi + h.c.$ The self-couplings determine the shape of the potential which is connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry.

+
$$D_{\mu}\phi l^{2} - V(\phi)$$
 $V_{H} = \mu^{2}\phi^{\dagger}\phi + \frac{1}{2}\lambda(\phi^{\dagger}\phi)^{2}$

• The Higgs-potential low energy expansion around its minimum includes triple and quartic terms:

$$V(H) = \frac{m_H^2}{2} H^2 + \lambda_3 \nu H^3 + \lambda_4 H^4$$

- In the SM, the Higgs field is fully determined by only two parameters, $\nu = (\sqrt{2}G_{\mu})^{-1/2} \sim 246$ GeV, and λ .
- New physics effects can be parameterised via a single parameter κ_{λ} , i.e. the rescaling of the **SM trilinear coupling**, λ_3^{SM} :

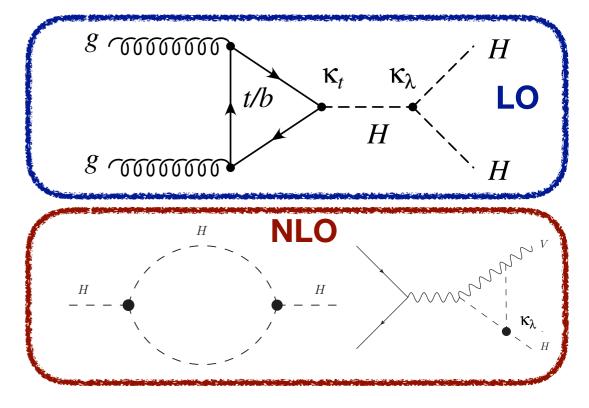
$$\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}}$$

Physics motivation

- Measuring the Higgs-boson self-couplings is a crucial validation of the Brout-Englert-Higgs (BEH) mechanism.
- The self-couplings determine the shape of the potential which is connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry.

$$V(H) = \frac{m_H^2}{2} H^2 + (\lambda_3)\nu H^3 + \lambda_4 H^4$$

 λ_3 can be probed at the LHC using:

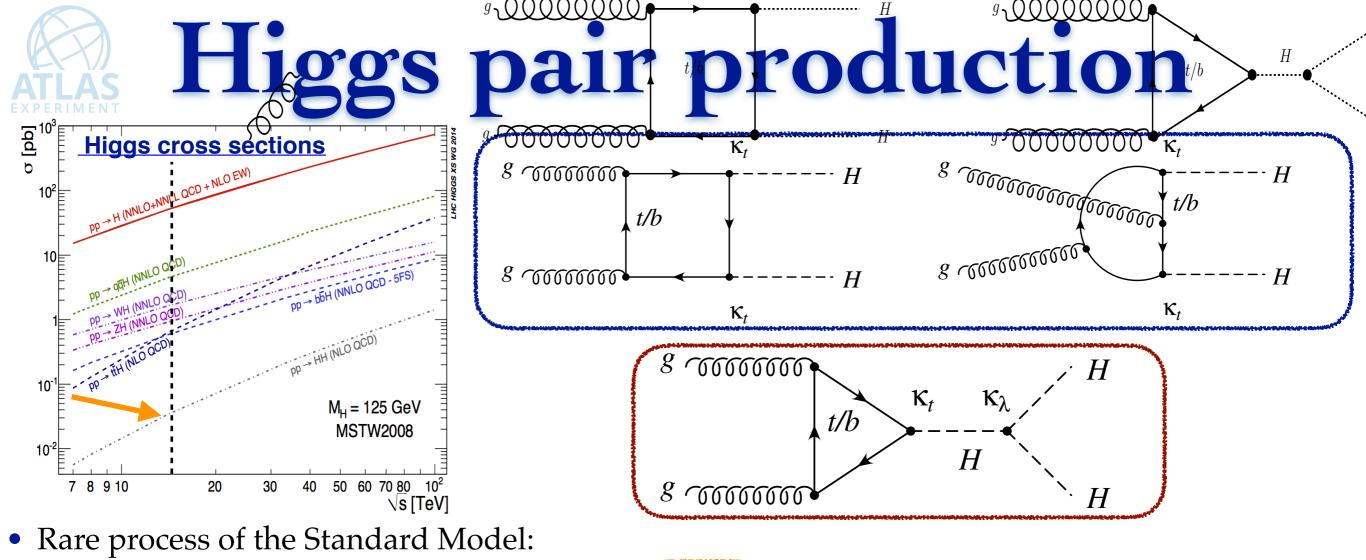

1/ Fre

+ Yi Yij Yig+ L. c.

 $+ D_{\mu}\phi l^{2}$

- production of Higgs boson pairs;
- Next-to-Leading Order (NLO) electroweak
 (EW) corrections to single-Higgs processes.

$$\kappa_{\lambda} = \frac{\lambda_3}{\lambda_3^{SM}}$$



3

- main production mode (90%) ggF: $\sigma_{pp \to HH}^{ggF} = 31.05 \text{ fb}_{-5.0\%}^{+2.2\%}$ (scale) $\pm 3.0\%$ (PDF + α_S) $\pm 2.6\%$ (m_{top} unc)
- the interference between box and triangle diagrams is destructive

$$\mathcal{A}(\kappa_t,\kappa_\lambda) = \kappa_t^2 \mathcal{A}_1 + \kappa_t \kappa_\lambda \mathcal{A}_2$$

- sensitive to the trilinear Higgs self-coupling at leading order in EW.

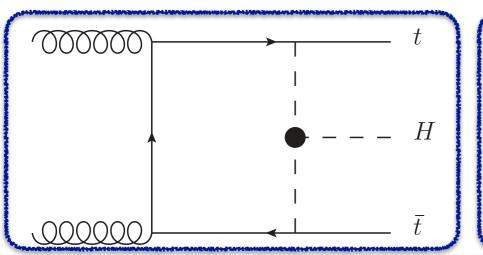
•
$$\sigma_{ggF}(pp \to HH)$$
 in terms of κ_{λ} and $\kappa_t : \sigma_{ggF}(pp \to HH) \sim \kappa_t^4 \left| |\mathcal{A}_1|^2 + 2\frac{\kappa_{\lambda}}{\kappa_t} \Re \mathcal{A}_1^* \mathcal{A}_2 + \left(\frac{\kappa_{\lambda}}{\kappa_t}\right)^2 |\mathcal{A}_2|^2 \right|$

- the κ_t^4 factor affects only the total cross section; kinematic distributions and signal acceptances depend only on $\kappa_{\lambda}/\kappa_t$.

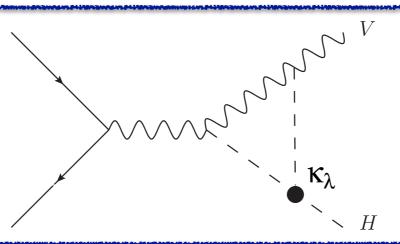
Theoretical framework described in <u>JHEP 1612, 080 (2016)</u> G. Degrassi, P.P. Giardino, F. Maltoni, D. Pagani <u>Eur. Phys. J. C (2017) 77: 887</u> F. Maltoni, D. Pagani, A. Shivaji, X. Zhao

Single-Higgs processes are sensitive to λ_3 via loop corrections. NLO EW κ_{λ} -dependent corrections can be divided into two categories:

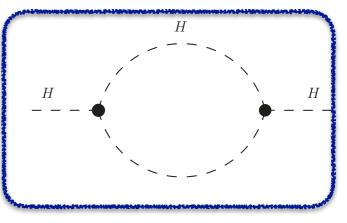
- a universal part, **quadratically dependent on** λ_3 , which originates from the Higgs-boson self-energy diagram;
- a process-dependent part, **linearly proportional to** λ_3 .

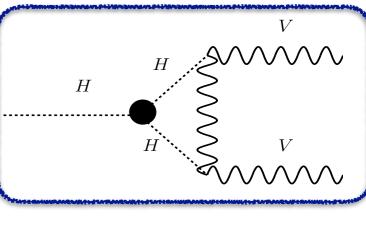

NLO EW κ_{λ} -dependent corrections affect:

- inclusive cross-sections (*ttH*, *ggF*, *ZH*, *WH*, *VBF*);
- kinematics properties of the event (differential distributions);
- Higgs-boson branching fractions.



corrections to $t\overline{t}H$

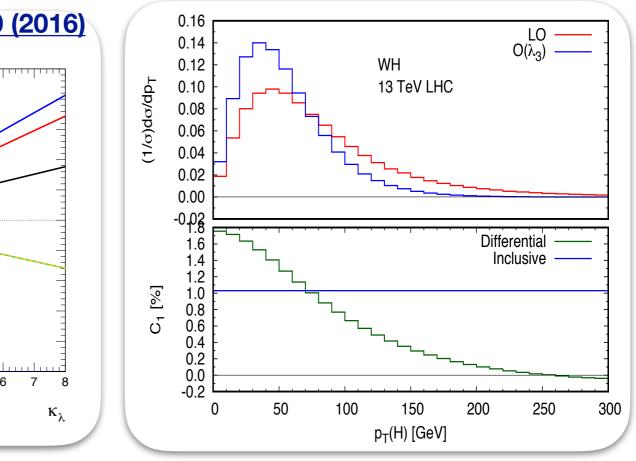



INFŃ

Universal part

corrections to VV

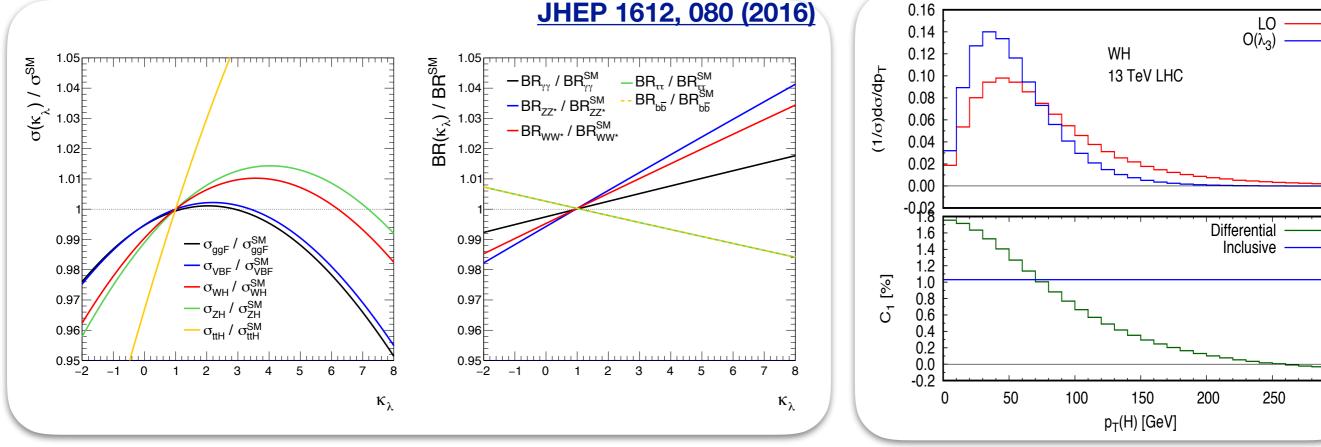
05/05/2020



5

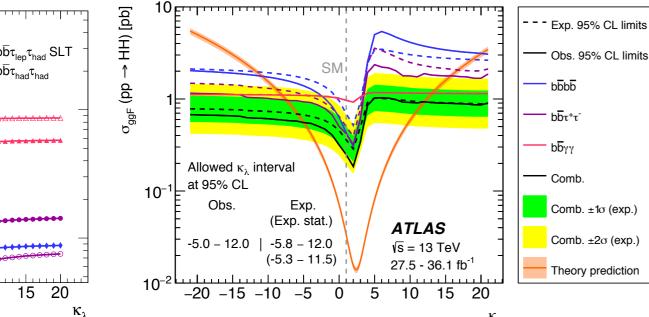
Single-Higgs processes are sensitive to λ_3 via loop corrections. NLO EW κ_{λ} -dependent corrections can be divided into two categories:

- a universal part, quadratically dependent on λ_3 , which originates from the Higgs-boson self-energy diagram;
- a process-dependent part, linearly proportional to λ_3 .

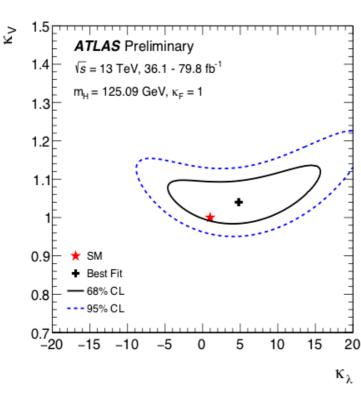


05/05/2020

Eur. Phys. J. C (2017) 77: 887

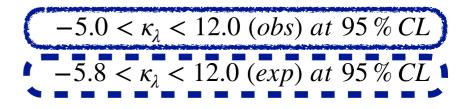

∎ROMA

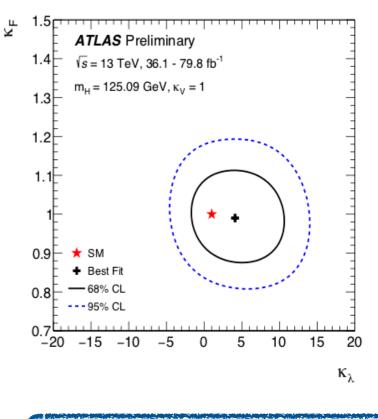
▲ TRE


INFŃ

Latest ATLAS experimental results

Single-Higgs production


2 In (A) ATLAS Preliminary √s = 13 TeV, 36.1 - 79.8 fb⁻¹ m_H = 125.09 GeV - - - Stat. only Stat. + Exp. Sys. Stat. + Exp. Sys. + Sig. Th. Sys. - Total = Stat. + Exp. Sys. + Sig. Th. Sys. + Bkg. Th. Sys -5 10 15 0 5 ĸ $-3.2 < \kappa_{\lambda} < 11.9 \ (obs) \ at \ 95 \% \ CL$ $-6.2 < \kappa_{\lambda} < 14.4 \ (exp) \ at \ 95 \ \% \ CL$


 $-6.7 < \kappa_{\lambda} < 18.4 \ (obs) \ at \ 95 \% \ CL$

Double-Higgs production

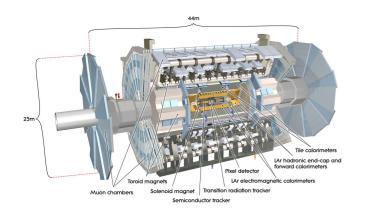
Phys. Lett. B 800 (2020) 135103

ATL-PHYS-PUB-2019-009

 $-3.2 < \kappa_{\lambda} < 11.9 \ (obs) \ at \ 95 \% \ CL$

EROMA

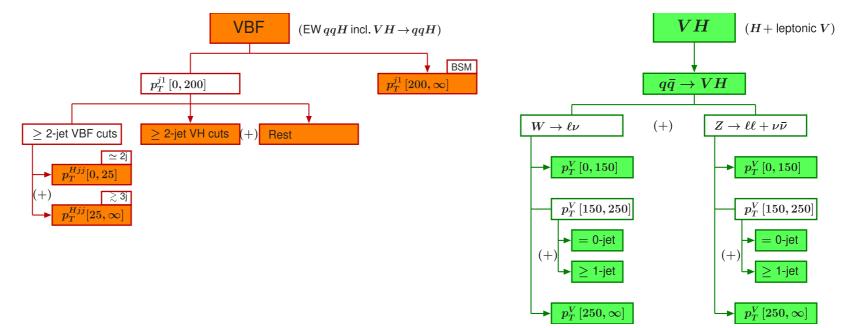
▲ TRE


eleonora.rossi@cern.ch

7

05/05/2020

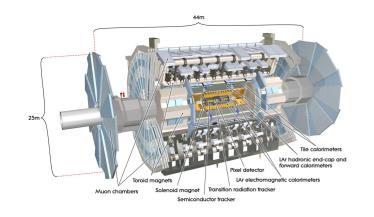
Data and input measurements


ATLAS-CONF-2019-049

Analysis	Integrated luminosity (fb ⁻¹)	
$H o \gamma \gamma$	79.8	
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell \text{)}$	79.8	
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1	2015-2017
$H \to \tau \tau$	36.1	
$VH, H \rightarrow b\bar{b}$	79.8	
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1	
$HH \rightarrow b\bar{b}b\bar{b}$	27.5	
$HH \rightarrow b\bar{b}\tau^+\tau^-$	36.1	
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1	

Single-Higgs inputs containing production and decay modes exploit:

- a luminosity of up to 80 fb⁻¹;
- inclusive cross sections, branching fractions, and also differential information for VBF and VH production modes (using STXS truth bin definitions);

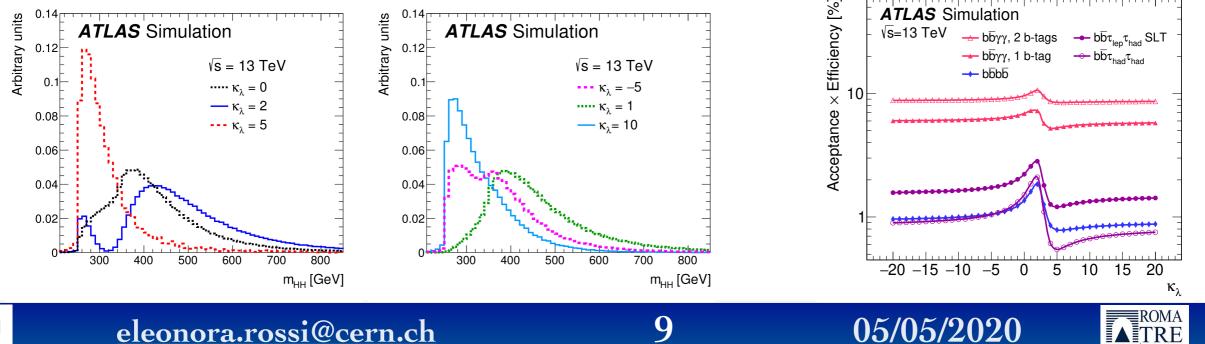

• the $t\bar{t}H \rightarrow \gamma\gamma$ categories included in $H \rightarrow \gamma\gamma$ analysis have been removed from the combination because they largely overlap with events selected by $HH \rightarrow b\bar{b}\gamma\gamma$.

Data and input measurements

ATLAS-CONF-2019-049

Analysis	Integrated luminosity (fb ⁻¹)	
$H \to \gamma \gamma$	79.8	
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell \text{)}$	79.8	
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1	2015-2017
$H \to \tau \tau$	36.1	
$VH, H \rightarrow b\bar{b}$	79.8	
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1	
$HH \rightarrow b\bar{b}b\bar{b}$	27.5	
$HH \rightarrow b\bar{b}\tau^+\tau^-$	36.1	
$HH \rightarrow b\bar{b}\gamma\gamma$	36.1	

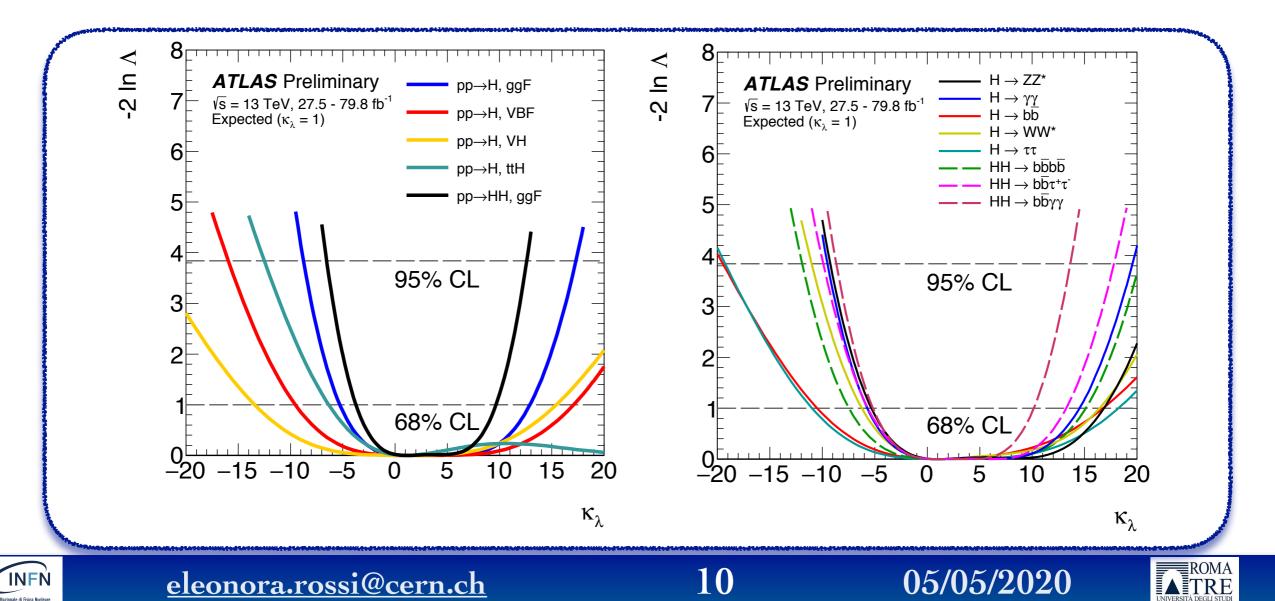
Double-Higgs inputs exploit:

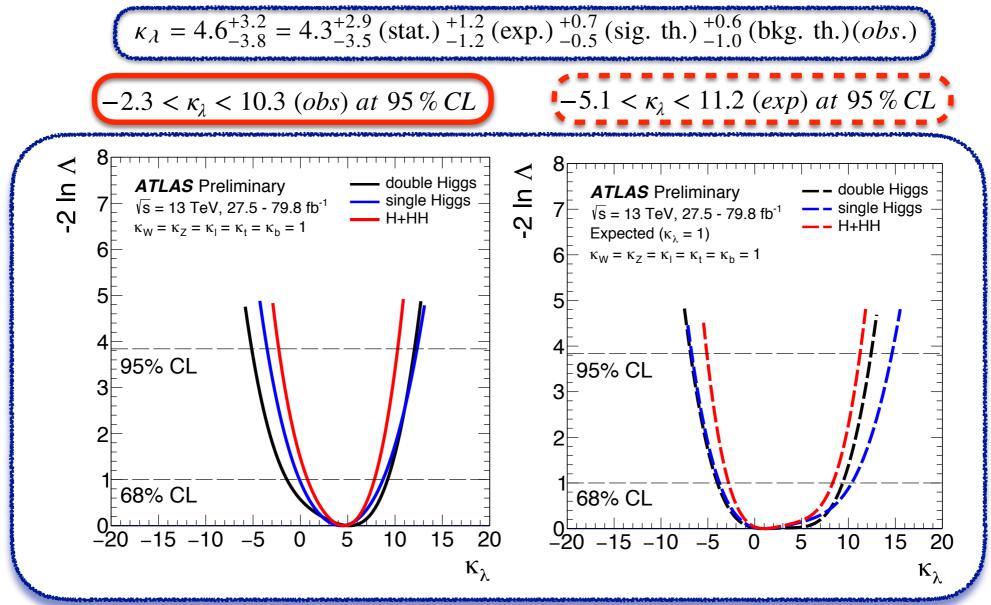

- a luminosity of up to 36.1 fb⁻¹;
- the three most sensitive double-Higgs channels, used to produce latest double-Higgs results.

 $HH \rightarrow b\bar{b}b\bar{b}$ Highest BR, large multi-jet background $HH \rightarrow b\bar{b}\tau^+\tau^-$ Relative large BR, cleaner final state small BR, clean signal extraction $HH \rightarrow b\bar{b}\gamma\gamma$

., HH) [hh]

uu)


variations of the inclusive cross section and branching fractions, and variations in Phys. Lett. B 800 (2020) 135103 the kinematic distributions.


H+HH combination: results of fit to κ_{λ} (production+decay modes) ATLAS-CONF-2019-049

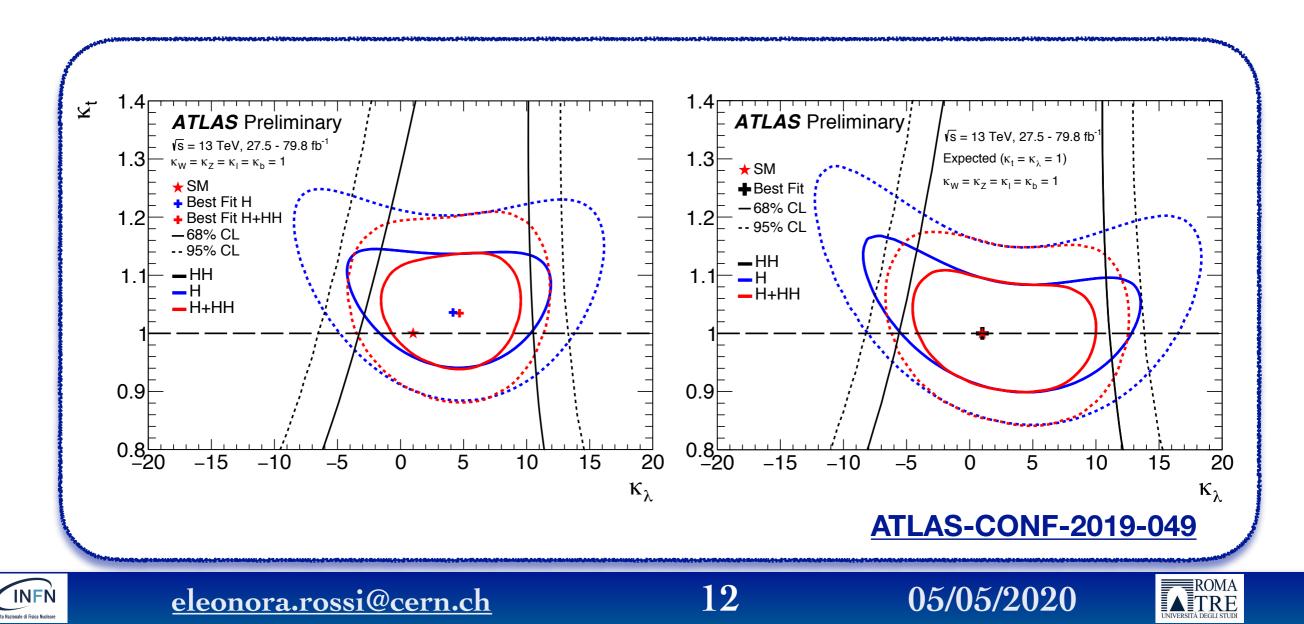
- The global likelihood shape depends on combining the contributions from the different **production** and **decay modes.**
- The decomposition of each production and decay contribution is based on the Asimov dataset.
- The dominant contributions to the κ_{λ} sensitivity derive from the *HH* channels, from the diboson decay channels $\gamma\gamma$, **ZZ**^{*}, **WW**^{*} and from the **ggF** and **ttH** production modes.

H+HH combination: results of fit to κ_{λ}

• A likelihood fit is performed to constrain the value of κ_{λ} in the theoretical allowed range $-20 < \kappa_{\lambda} < 20$; all other couplings are set to their SM values.

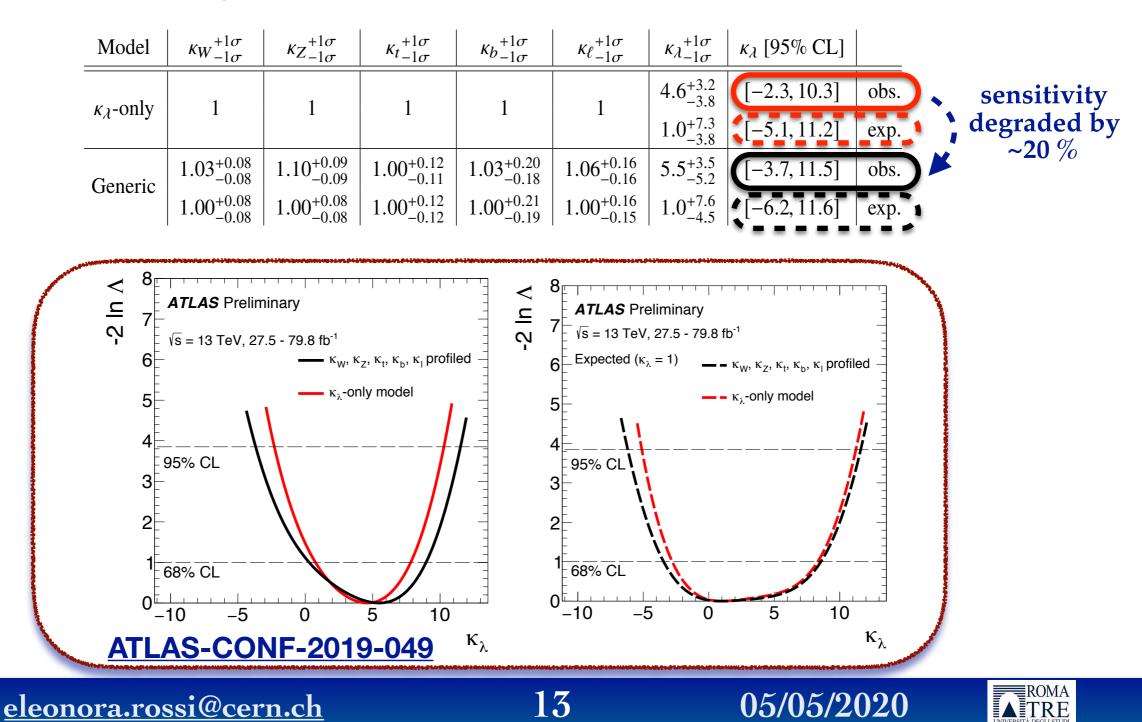
• The double-Higgs boson production measurements are more sensitive than the single-Higgs boson measurement for $\kappa_{\lambda} \gg 1$ and show similar sensitivity for negative κ_{λ} .

• The combination significantly improves the constraining power on κ_{λ} .


05/05/2020

H+**HH** combination: results of fit to κ_{λ} and κ_t

• A likelihood fit is performed to constrain at the same time κ_{λ} and κ_t ; all other couplings are set to their SM values.


- Double–Higgs analyses alone cannot constrain κ_{λ} and κ_t simultaneously.
- The combination with single-Higgs measurements allows the determination of κ_t to a sufficient precision to restore most of the ability of the double-Higgs analyses to constrain κ_{λ} .

H+HH combination: generic model

• The constraining power of the single Higgs-boson production measurement, allows to perform a fit in a more generic model, fitting simultaneously κ_{λ} - κ_W - κ_Z - κ_{lepton} - κ_b - κ_t .

• The combination of single- and double-Higgs analyses allows to put sizeable constraints even in this generic model.

• In the simplified assumption that all deviations from the SM expectation have to be interpreted as modifications of the trilinear coupling of the Higgs boson, the best fit value of κ_{λ} from the combination of single and double-Higgs analyses is $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8}$ excluding at the 95% CL values outside the interval $-2.3 < \kappa_{\lambda} < 10.3$.

- The H + HH combination result constitutes a **significant improvement** on the constraints on κ_{λ} obtained from single-Higgs and double-Higgs analyses alone.
- Moreover, the *H* + *HH* combination allows to **decouple** the self-coupling and top-Yukawa coupling as well as other couplings.
- Further improvements are expected with the **increasing luminosity**, as well as with the implementation of the **differential information** in analyses like $t\bar{t}H$.
- The ATLAS experiment has set the **most stringent constraints on** κ_{λ} from experimental data.

BACKUP

eleonora.rossi@cern.ch

15

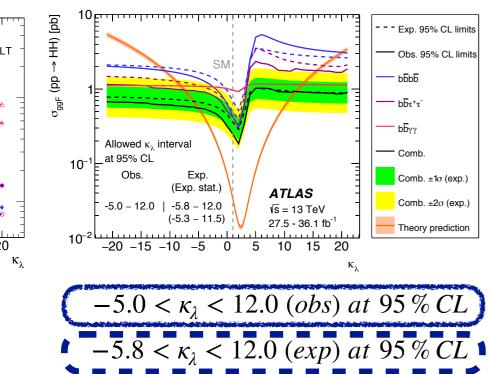
05/05/2020

The Higgs-boson self-coupling

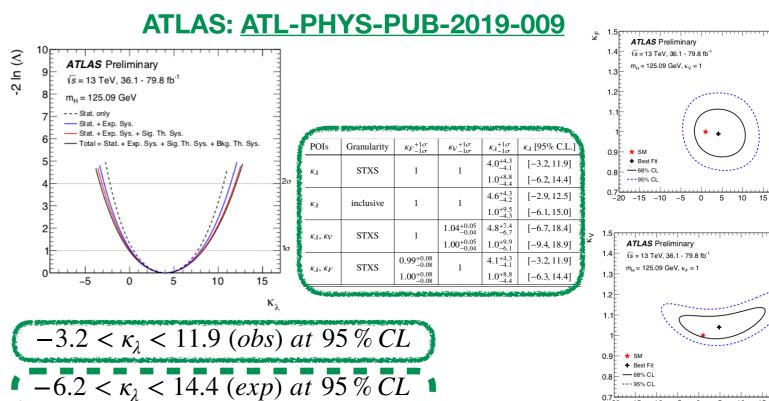
Phys. Rev. D 88, 055024 (2013)

The maximal self-coupling deviation from its SM value in different BSM theories.

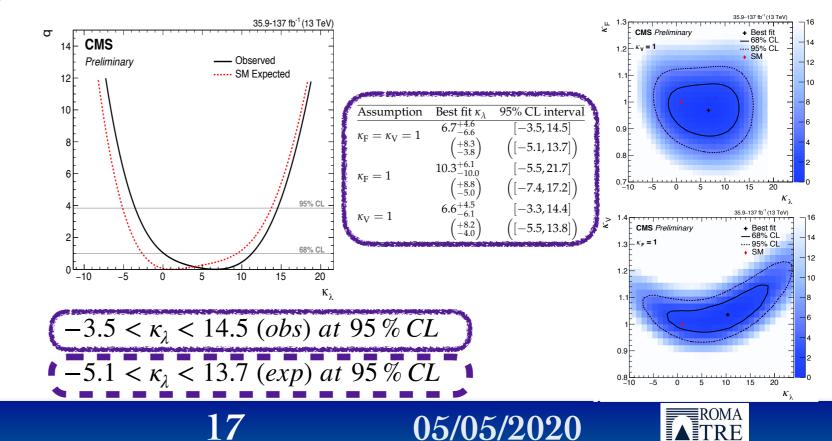
$\Delta g_{hhh}/g_{hhh}^{SM}$
-18%
tens of $\%$
$-2\%^{a}$ $-15\%^{b}$
-25%


- Mixed-in Singlet Model: a theory with an extra singlet where the singlet mixes with the SM Higgs through a renormalisable operator.
- Composite Higgs Model: composite Higgs models are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions.
- Minimal Supersymmetry Model: the Minimal Supersymmetric Standard Model (MSSM) exhibits an extended Higgs sector with two Higgs boson doublets, H_d and H_u , which couple to down- and up-type quarks, respectively.
- NMSSM Model: extension of the MSSM adding a mass term μ in a way similar to the generation of quark and lepton masses in the SM.

Latest experimental results


ATLAS: Phys. Lett. B 800 (2020) 135103

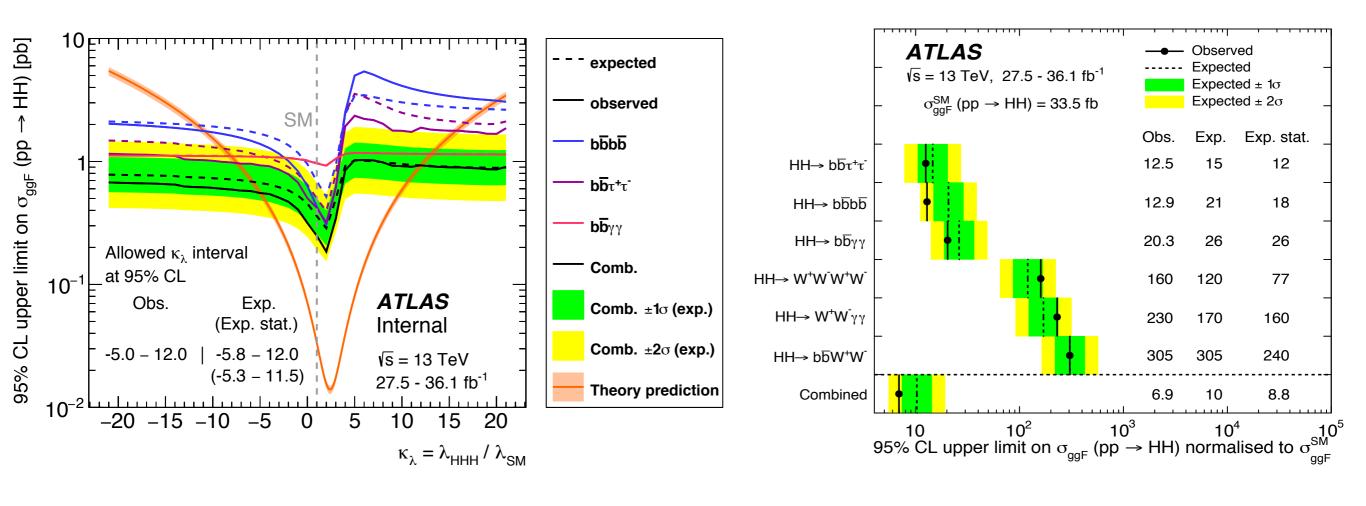
CMS: Phys. Rev. Lett. 122, 121803 (2019)


eleonora.rossi@cern.ch

-15 -10 -5

0 5 10 15

CMS: CMS-PAS-HIG-19-005



Double-Higgs production: latest results

Phys. Lett. B 800 (2020) 135103

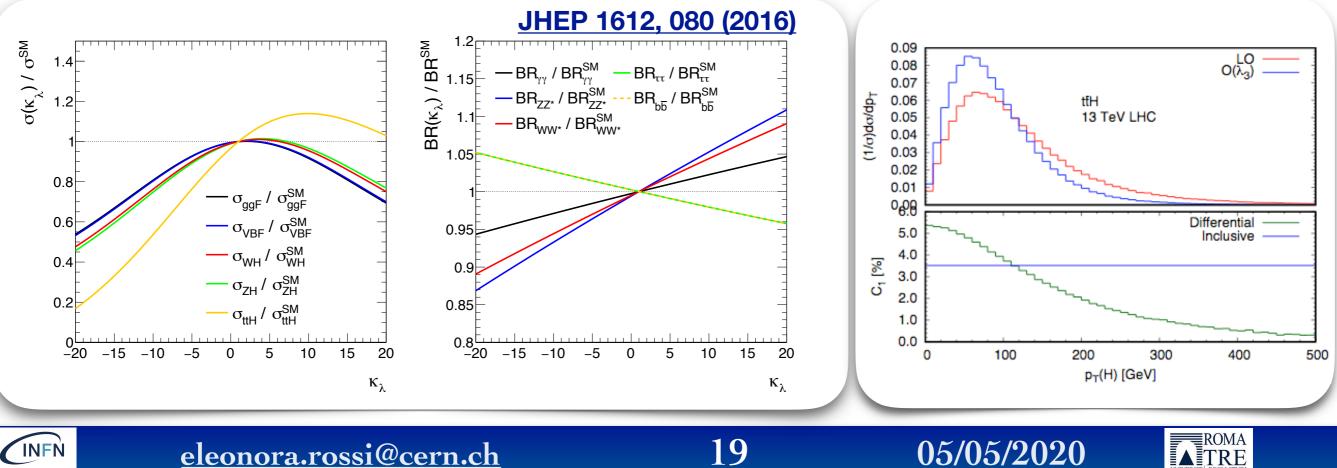
- The dependences on κ_{λ} of the Higgs boson branching fractions and of the single-Higgs background have been neglected;
- all couplings except the Higgs-boson self-coupling have been set to their SM values;
- exclusion limits have been set after a κ_{λ} -scan on the cross section and a comparison with the theoretical $\sigma_{ggF}(pp \rightarrow HH)$ cross section as a function of κ_{λ} .

18

∎ROMA

▲ TRE

Single-Higgs production


• The production cross sections σ_i and the branching fractions BR_f normalised to their SM values, i.e. μ_i and μ_f , are parameterised as functions of κ_{λ} :

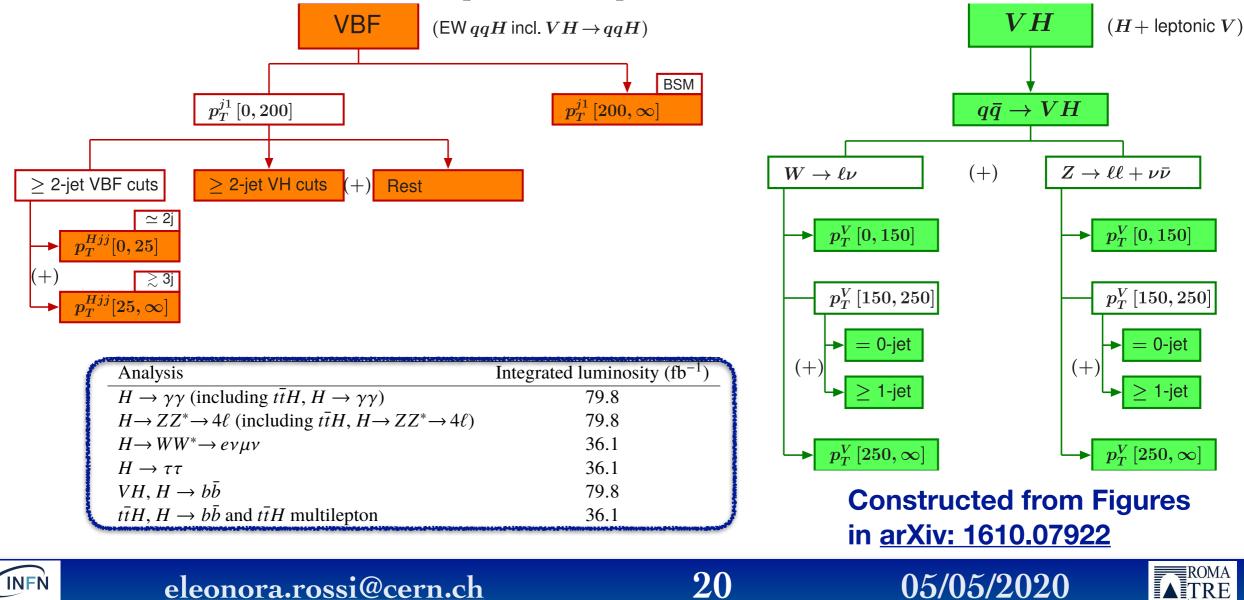
$$\mu_{if}(\kappa_{\lambda}) = (\mu_{i}(\kappa_{\lambda}) \times (\mu_{f}(\kappa_{\lambda})) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{SM,f}}$$

$$(\mu_{i}(\kappa_{\lambda},\kappa_{i}) = \frac{\sigma^{BSM}}{\sigma^{SM}} = Z_{H}^{BSM}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{EW}^{i}}\right]$$

$$(\mu_{i}(\kappa_{\lambda},\kappa_{f}) = \frac{\sigma_{i}(\kappa_{\lambda})}{BR_{f}^{SM}} = \frac{\kappa_{f}^{2} + (\kappa_{\lambda} - 1)C_{1}^{f}}{\sum_{j} BR_{j}^{SM}} \left[\kappa_{j}^{2} + (\kappa_{\lambda} - 1)C_{1}^{j}\right]$$

- κ_i and κ_f represent multiplicative modifiers to other Higgs boson couplings for initial and final states, parameterised as in the LO κ -framework;
- $K_{EW}^i = \sigma_{NLO}^{SM,i} / \sigma_{LO}^{SM,i}$ accounts for the complete NLO EW correction of the production cross Eur. Phys. J. C (2017) 77: 887 section for the process in the SM hypothesis (i.e. $\kappa_{\lambda}=1$).

▲ TRE

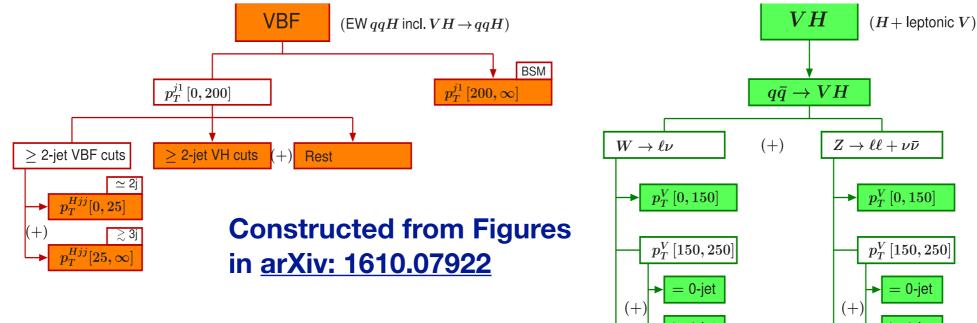


Single-Higgs production: data and input measurements

The results are obtained using ATLAS data corresponding to a luminosity of up to 80 fb^{-1} .

Two different inputs, (containing production and decay modes) have been considered:

- one is used for inclusive estimations;
- the second one is profiled in bins of truth-level observables, p_T^H (Simplified Template Cross Sections STXS bins); it can be used for differential estimations; the analysis $VBF H \rightarrow b\bar{b}$ has been excluded from the input (low impact + no STXS bins).



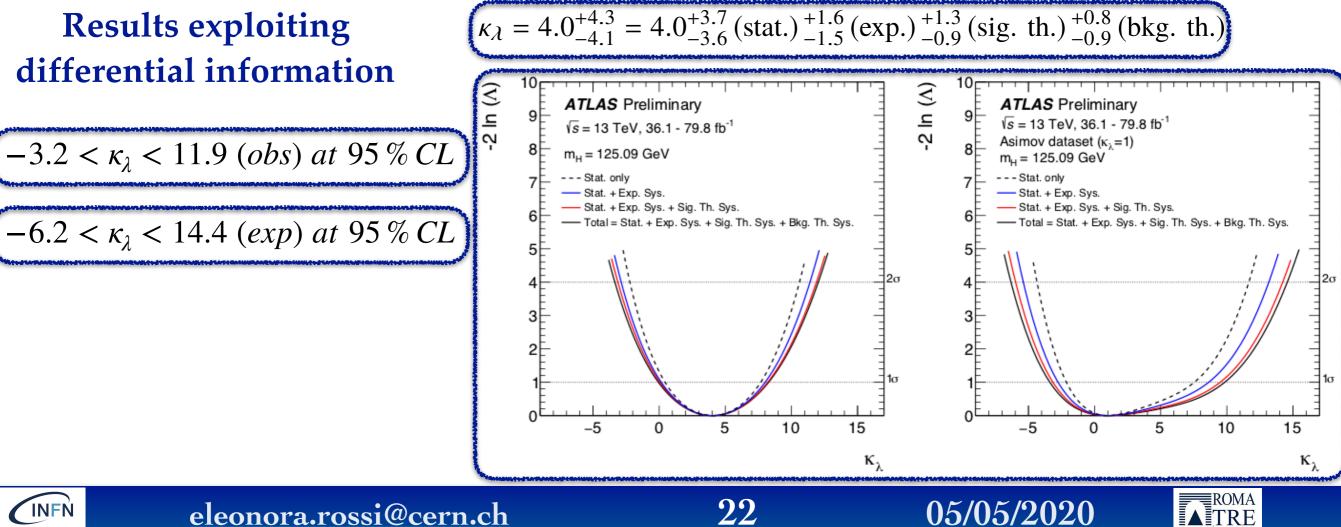
Single-Higgs production:

kinematic dependent coefficients

- The parameterisation of the variation of the production cross-section as a function of κ_{λ} can be adapted to describe the cross-section in each single STXS region.
- This requires re-deriving the values of the kinematic dependent coefficients C_1^i in each region defined in the measurement.

ATL-PHYS-PUB-2019-009

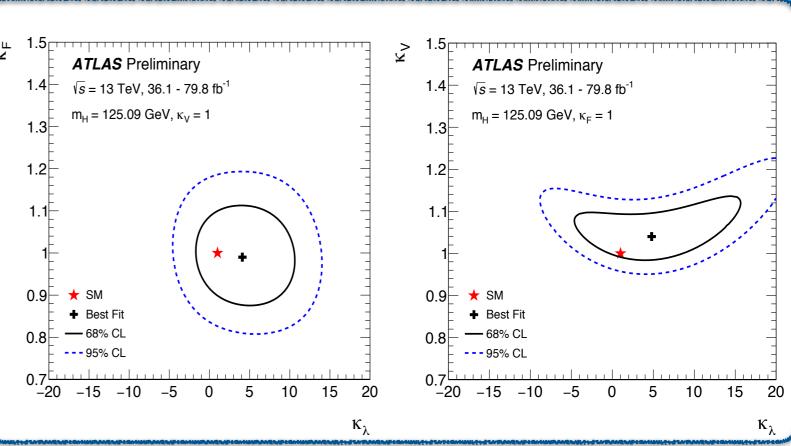
INFN	<u>eleonora.rossi@cern.ch</u>			21	-	05/05/2020	ROM	A E
	$p_{\rm T}^{j1} > 200 {\rm GeV}$	0.39	0.23	0.28	$qq \rightarrow H \nu \nu$	$p_{\rm T}^V > 250 {\rm GeV}, \ge 1j$ $p_{\rm T}^V > 250 {\rm GeV}$		0.39
	no <i>VBF/VH</i> -cuts, $p_{\rm T}^{j1} < 200 {\rm GeV}$	0.65	1.13	1.28	$qq \rightarrow mu$	$150 < p_{\rm T}^V < 250 \text{ GeV}, 0j$ $150 < p_{\rm T}^V < 250 \text{ GeV}, \ge 1j$		0.20
VBF + V(had)H	VH -cuts + $p_{\rm T}^{j1}$ < 200 GeV	0.64	0.89	1.10	$qq \to H\ell\ell$	$p_{\rm T}^V < 150 \text{ GeV}$		1.33
	$VBF-cuts + p_{\rm T}^{j1} < 200 \text{ GeV}, \ge 3j$	0.61	0.85	1.04		$150 < p_{\rm T}^V < 250 \text{ GeV}, \ge 1j$ $p_{\rm T}^V > 250 \text{ GeV}$	0.33	
	$VBF-cuts + p_{\rm T}^{j1} < 200 \text{ GeV}, \le 2j$	0.63	0.91	1.07	$qq \rightarrow H\ell\nu$	$150 < p_{\rm T}^V < 250$ GeV, $0j$	0.18	
	C		$C_1^i \times 100$			$p_{\rm T}^V < 150 { m GeV}$	1.15	
STXS region		VBF WH ZH		STXS region		$\begin{array}{c c} VBF & WH \\ \hline C_1^i \times 100 \end{array}$	$\begin{vmatrix} ZH \\ 0 \end{vmatrix}$	
and the second s	/#####################################							711


 $p_T^V[250,\infty]$

 p_T^V [250, ∞]

Single-Higgs production: results of fit to κ_{λ}

- ATL-PHYS-PUB-2019-009 • Exploiting NLO electroweak corrections to single-Higgs processes, it is possible to extract constraints on κ_i through a global likelihood fit in the range $|\kappa_i| < 20$.
- The impact on the κ_i determination of using an inclusive cross-section measurement, rather than the differential cross-section information contained in the STXS bins, has been studied; thus VBF, WH and ZH production modes have been considered as single inclusive bins.
- Compared to the use of differential information, the inclusive fit does not currently lead to a significant loss in sensitivity to κ_{λ} .


Results exploiting

Single-Higgs production: results of fit to κ_{λ} and κ_{F} or κ_{λ} and κ_{V} ATL-PHYS-PUB-2019-009

- In order to target BSM models where new physics could affect only the Yukawa type terms of the SM ($\kappa_V = 1$) or only the couplings to vector bosons ($\kappa_F = 1$), in addition to the Higgs-boson self-coupling κ_{λ} , a simultaneous fit is performed to κ_{λ} and κ_F , and to κ_{λ} and κ_V ; the remaining coupling modifier is kept fixed to the SM prediction.
- The sensitivity is not much degraded when simultaneously fitting κ_{λ} and κ_{F} while it is degraded by 50% in the case κ_{λ} and κ_{V} .
- An even less constrained fit, performed by fitting simultaneously κ_{λ} , κ_F and κ_V results in nearly no sensitivity to κ_{λ} .

POIs	Granularity	$\kappa_{F^{-1}\sigma}$	$\kappa_{V_{-1}\sigma}^{+1\sigma}$	$\kappa_{\lambda - 1\sigma}^{+1\sigma}$	к _л [95% C.L.]
<i>W</i> -	STXS	1	1	$4.0^{+4.3}_{-4.1}$	[-3.2, 11.9]
Кд	5172	1	1	$1.0^{+8.8}_{-4.4}$	[-6.2, 14.4]
Ka	inclusive	1	1	$4.6^{+4.3}_{-4.2}$	[-2.9, 12.5]
Кд	menusive			$1.0^{+9.5}_{-4.3}$	[-6.1, 15.0]
V a Var	STXS	1	$1.04^{+0.05}_{-0.04}$	$4.8^{+7.4}_{-6.7}$	[-6.7, 18.4]
$\kappa_{\lambda}, \kappa_{V}$ STXS	1	$1.00^{+0.05}_{-0.04}$	$1.0^{+9.9}_{-6.1}$	[-9.4, 18.9]	
$\kappa_{\lambda}, \kappa_F$ STXS	$0.99^{+0.08}_{-0.08}$	1	$4.1^{+4.3}_{-4.1}$	[-3.2, 11.9]	
	$1.00^{+0.08}_{-0.08}$		$1.0^{+8.8}_{-4.4}$	[-6.3, 14.4]	

05/05/2020

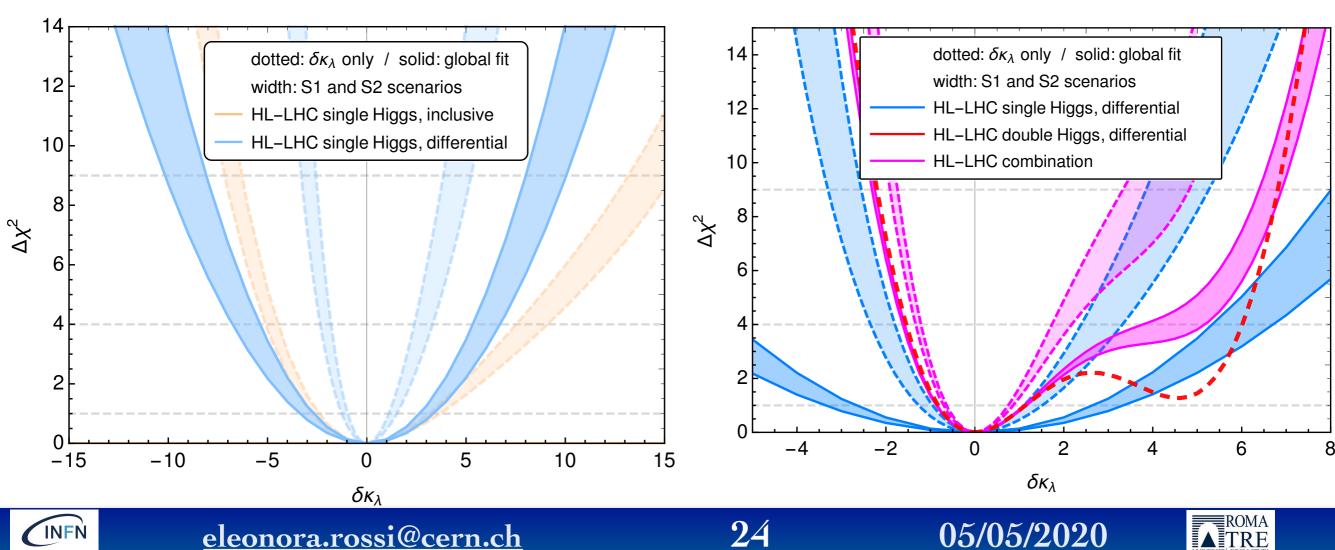
■ROMA

▲ TRE

eleonora.rossi@cern.ch

23

HL-LHC projection


- HH analyses currently are very limited by statistics also in its systematic uncertainties (eg. bkg systematics), therefore at HL-LHC they can gain (obviously) a lot in sensitivity.
- The gain for single Higgs is not so enhanced by the increasing of luminosity since at a certain point it becomes limited by systematic uncertainties, that in the HL-LHC projection are not so much reduced.

CERN-LPCC-2018-04

▲ TRE

• Differential information has a great impact on the measurement.

HL-LHC prospects, Yellow Report results

