Constraining the Higgs boson self-coupling in a combined measurement of single and double Higgs boson channels at the ATLAS experiment

Eleonora Rossi (eleonora.rossi@cern.ch)
on behalf of the ATLAS Collaboration

PHENO2020 - May 4-6, 2020
University of Pittsburgh
Physics motivation

- Measuring the Higgs-boson self-couplings is a crucial validation of the Brout-Englert-Higgs (BEH) mechanism.

- The self-couplings determine the shape of the potential which is connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry.

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\
+ \sum \overline{\psi} i \gamma_\mu \gamma_5 \psi + h.c. \\
+ \sum \overline{\psi} \gamma_\mu (m_\psi + \lambda \phi) \psi + h.c. \\
+ \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - V(\phi)
\]

\[
V_H = \mu^2 \phi^4 + \frac{1}{2} \lambda (\phi^4)^2
\]

- The Higgs-potential low energy expansion around its minimum includes triple and quartic terms:

\[
V(H) = \frac{m_H^2}{2} H^2 + \lambda_3 \nu H^3 + \lambda_4 H^4
\]

- In the SM, the Higgs field is fully determined by only two parameters, \(\nu = (\sqrt{2} G_\mu)^{-1/2} \sim 246 \text{ GeV} \), and \(\lambda \).

- New physics effects can be parameterised via a single parameter \(\kappa_\lambda \), i.e. the rescaling of the SM trilinear coupling, \(\lambda_3^{SM} \):

\[
\kappa_\lambda = \frac{\lambda_3}{\lambda_3^{SM}}
\]
Physics motivation

- Measuring the Higgs-boson self-couplings is a crucial validation of the Brout-Englert-Higgs (BEH) mechanism.
- The self-couplings determine the shape of the potential which is connected to the phase transition of the early universe from the unbroken to the broken electroweak symmetry.

\[V(H) = \frac{m_H^2}{2} H^2 + \lambda_3 \nu H^3 + \lambda_4 H^4 \]

\(\lambda_3 \) can be probed at the LHC using:
- production of Higgs boson pairs;
- Next-to-Leading Order (NLO) electroweak (EW) corrections to single-Higgs processes.

\[\kappa_\lambda = \frac{\lambda_3}{\lambda_3^{SM}} \]
Higgs pair production

- Rare process of the Standard Model:
 - main production mode (90%) ggF: \(\sigma_{pp \to HH}^{ggF} = 31.05 \, \text{fb}^{(+2.2\%)}_{(-5.0\%)} \) (scale) \(\pm 3.0\% \) (PDF + \(\alpha_S \)) \(\pm 2.6\% \) (m_{top} unc)
 - the interference between box and triangle diagrams is destructive
 \[\mathcal{A}(\kappa_t, \kappa_\lambda) = \kappa_t^2 \mathcal{A}_1 + \kappa_t \kappa_\lambda \mathcal{A}_2 \]
 - sensitive to the trilinear Higgs self-coupling at leading order in EW.

- \(\sigma_{ggF}(pp \to HH) \) in terms of \(\kappa_\lambda \) and \(\kappa_t \):
 \(\sigma_{ggF}(pp \to HH) \sim \kappa_t^4 \left[|\mathcal{A}_1|^2 + 2 \frac{\kappa_\lambda}{\kappa_t} \Re \mathcal{A}_1^* \mathcal{A}_2 + \left(\frac{\kappa_\lambda}{\kappa_t} \right)^2 |\mathcal{A}_2|^2 \right] \)
 - the \(\kappa_t^4 \) factor affects only the total cross section; kinematic distributions and signal acceptances depend only on \(\kappa_\lambda/\kappa_t \).

eleonora.rossi@cern.ch

05/05/2020
Single-Higgs production

Theoretical framework described in:
- **JHEP 1612, 080 (2016)** G. Degrassi, P.P. Giardino, F. Maltoni, D. Pagani

Single-Higgs processes are sensitive to λ_3 via loop corrections. NLO EW κ_λ-dependent corrections can be divided into two categories:

- a universal part, **quadratically dependent on λ_3**, which originates from the Higgs-boson self-energy diagram;
- a process-dependent part, **linearly proportional to λ_3**.

NLO EW κ_λ-dependent corrections affect:
- inclusive cross-sections ($t\bar{t}H, ggF, ZH, WH, VBF$);
- **kinematics** properties of the event (differential distributions);
- Higgs-boson branching fractions.

Examples of process-dependent part:
- corrections to $t\bar{t}H$
- corrections to VH

Universal part
corrections to VV

$|\kappa_\lambda| \lesssim 20$

Florence, Italy 05/05/2020

leonora.rossi@cern.ch
Single-Higgs processes are sensitive to λ_3 via loop corrections. NLO EW κ_λ-dependent corrections can be divided into two categories:

- a universal part, **quadratically dependent on** λ_3, which originates from the Higgs-boson self-energy diagram;
- a process-dependent part, **linearly proportional to** λ_3.
Latest ATLAS experimental results

Double-Higgs production

$-5.0 < \kappa_\lambda < 12.0$ (obs) at 95% CL
$-5.8 < \kappa_\lambda < 12.0$ (exp) at 95% CL

Single-Higgs production

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, $36.1 - 79.8$ fb$^{-1}$
$m_H = 125.09$ GeV

$-3.2 < \kappa_\lambda < 11.9$ (obs) at 95% CL
$-6.2 < \kappa_\lambda < 14.4$ (exp) at 95% CL

Table 2: Allowed λ intervals at 95% CL for the $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$ and $b\bar{b}$ final states and their combination. The column “Obs.” lists the observed results, “Exp.” the expected results obtained including all statistical and systematic uncertainties in the fit, and “Exp. stat.” the expected results obtained including only the statistical uncertainties.
Single-Higgs inputs containing production and decay modes exploit:

- a luminosity of up to 80 fb\(^{-1}\);
- inclusive cross sections, branching fractions, and also differential information for VBF and VH production modes (using STXS truth bin definitions);

- the \(t\bar{t}H \rightarrow \gamma \gamma \) categories included in \(H \rightarrow \gamma \gamma \) analysis have been removed from the combination because they largely overlap with events selected by \(HH \rightarrow b\bar{b} \gamma \gamma \).

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Integrated luminosity (fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow \gamma \gamma)</td>
<td>79.8</td>
</tr>
<tr>
<td>(H \rightarrow ZZ^* \rightarrow 4\ell) (including (t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell))</td>
<td>79.8</td>
</tr>
<tr>
<td>(H \rightarrow WW^* \rightarrow e\nu\mu\nu)</td>
<td>36.1</td>
</tr>
<tr>
<td>(H \rightarrow \tau\tau)</td>
<td>36.1</td>
</tr>
<tr>
<td>(VH, H \rightarrow bb)</td>
<td>79.8</td>
</tr>
<tr>
<td>(t\bar{t}H, H \rightarrow bb) & (t\bar{t}H) multilepton</td>
<td>36.1</td>
</tr>
<tr>
<td>(HH \rightarrow b\bar{b}bb)</td>
<td>27.5</td>
</tr>
<tr>
<td>(HH \rightarrow b\bar{b}\tau^+\tau^-)</td>
<td>36.1</td>
</tr>
<tr>
<td>(HH \rightarrow b\bar{b}\gamma\gamma)</td>
<td>36.1</td>
</tr>
</tbody>
</table>
Double-Higgs inputs exploit:

- a luminosity of up to 36.1 fb\(^{-1}\);
- the three most sensitive double-Higgs channels, used to produce latest double-Higgs results.
- variations of the inclusive cross section and branching fractions, and variations in the kinematic distributions.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Integrated luminosity (fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow \gamma\gamma)</td>
<td>79.8</td>
</tr>
<tr>
<td>(H \rightarrow ZZ^* \rightarrow 4\ell) (including (t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell))</td>
<td>79.8</td>
</tr>
<tr>
<td>(H \rightarrow WW^* \rightarrow ev\mu\nu)</td>
<td>36.1</td>
</tr>
<tr>
<td>(H \rightarrow \tau\tau)</td>
<td>36.1</td>
</tr>
<tr>
<td>(VH, H \rightarrow bb)</td>
<td>79.8</td>
</tr>
<tr>
<td>(t\bar{t}H, H \rightarrow bb) and (t\bar{t}H) multilepton</td>
<td>36.1</td>
</tr>
<tr>
<td>(HH \rightarrow bbb)</td>
<td>27.5</td>
</tr>
<tr>
<td>(HH \rightarrow b\bar{b}\tau^+\tau^-)</td>
<td>36.1</td>
</tr>
<tr>
<td>(HH \rightarrow b\bar{b}\gamma\gamma)</td>
<td>36.1</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2019-049

eleonora.rossi@cern.ch

Phys. Lett. B 800 (2020) 135103

\(HH \rightarrow b\bar{b}\tau^+\tau^-\) Relative large BR, cleaner final state

\(HH \rightarrow b\bar{b}\gamma\gamma\) small BR, clean signal extraction

\(HH \rightarrow b\bar{b}\bar{b}\bar{b}\) Highest BR, large multi-jet background
The global likelihood shape depends on combining the contributions from the different production and decay modes.

The decomposition of each production and decay contribution is based on the Asimov dataset.

The dominant contributions to the κ_λ sensitivity derive from the HH channels, from the diboson decay channels $\gamma\gamma$, ZZ^*, WW^* and from the ggF and ttH production modes.
A likelihood fit is performed to constrain the value of κ_λ in the theoretical allowed range $-20 < \kappa_\lambda < 20$; all other couplings are set to their SM values.

$$\kappa_\lambda = 4.6^{+3.2}_{-3.8} = 4.3^{+2.9}_{-3.5} \text{ (stat.)} +1.2_{-1.2} \text{ (exp.)} +0.7_{-0.5} \text{ (sig. th.)} +0.6_{-1.0} \text{ (bkg. th.)} \text{(obs.)}$$

$-2.3 < \kappa_\lambda < 10.3 \text{ (obs)}$ at 95% CL

$-5.1 < \kappa_\lambda < 11.2 \text{ (exp)}$ at 95% CL

The double-Higgs boson production measurements are more sensitive than the single-Higgs boson measurement for $\kappa_\lambda \gg 1$ and show similar sensitivity for negative κ_λ.

The combination significantly improves the constraining power on κ_λ.

eleonora.rossi@cern.ch
H+HH combination: results of fit to κ_{λ} and κ_{t}

- A likelihood fit is performed to constrain at the same time κ_{λ} and κ_{t}; all other couplings are set to their SM values.
- Double–Higgs analyses alone cannot constrain κ_{λ} and κ_{t} simultaneously.
- The combination with single-Higgs measurements allows the determination of κ_{t} to a sufficient precision to restore most of the ability of the double-Higgs analyses to constrain κ_{λ}.
The constraining power of the single Higgs-boson production measurement allows to perform a fit in a more generic model, fitting simultaneously κ_{λ}, κ_{W}, κ_{Z}, κ_{lepton}, κ_{b}, κ_{t}.

The combination of single- and double-Higgs analyses allows to put sizeable constraints even in this generic model.

<table>
<thead>
<tr>
<th>Model</th>
<th>κ_{W}+1σ</th>
<th>κ_{Z}+1σ</th>
<th>κ_{t}+1σ</th>
<th>κ_{b}+1σ</th>
<th>κ_{t}-1σ</th>
<th>κ_{b}-1σ</th>
<th>κ_{t} [95% CL]</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_{t}-only</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[−2.3, 10.3] obs.</td>
</tr>
<tr>
<td>Generic</td>
<td>1.03+0.08−0.08</td>
<td>1.10+0.09−0.09</td>
<td>1.00+0.12−0.11</td>
<td>1.03+0.20−0.18</td>
<td>1.06+0.16−0.15</td>
<td>5.5+3.5−5.2</td>
<td>[−3.7, 11.5] obs.</td>
</tr>
<tr>
<td></td>
<td>1.00+0.08−0.08</td>
<td>1.00+0.08−0.08</td>
<td>1.00+0.12−0.12</td>
<td>1.00+0.21−0.19</td>
<td>1.00+0.16−0.15</td>
<td>1.0+7.6−4.5</td>
<td>[−6.2, 11.6] exp.</td>
</tr>
</tbody>
</table>

-2 ln Λ vs κ_{t} for $\sqrt{s} = 13$ TeV, 27.5 - 79.8 fb$^{-1}$

ATLAS

Preliminary

ATLAS-CONF-2019-049

eleonora.rossi@cern.ch

05/05/2020
Summary

• In the simplified assumption that all deviations from the SM expectation have to be interpreted as modifications of the trilinear coupling of the Higgs boson, the best fit value of κ_λ from the combination of single and double-Higgs analyses is $\kappa_\lambda = 4.6^{+3.2}_{-3.8}$, excluding at the 95% CL values outside the interval $-2.3 < \kappa_\lambda < 10.3$.

• The $H + HH$ combination result constitutes a significant improvement on the constraints on κ_λ obtained from single-Higgs and double-Higgs analyses alone.

• Moreover, the $H + HH$ combination allows to decouple the self-coupling and top-Yukawa coupling as well as other couplings.

• Further improvements are expected with the increasing luminosity, as well as with the implementation of the differential information in analyses like $t\bar{t}H$.

• The ATLAS experiment has set the most stringent constraints on κ_λ from experimental data.
$L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \phi_i \phi_j \phi_k + \text{a.c.} + m_\phi^2 - V(\phi)$
The maximal self-coupling deviation from its SM value in different BSM theories.

<table>
<thead>
<tr>
<th>Model</th>
<th>$\Delta g_{hhh}/g_{hhh}^{SM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-in Singlet</td>
<td>$-18%$</td>
</tr>
<tr>
<td>Composite Higgs</td>
<td>tens of $%$</td>
</tr>
<tr>
<td>Minimal Supersymmetry</td>
<td>$-2%^a - 15%^b$</td>
</tr>
<tr>
<td>NMSSM</td>
<td>$-25%$</td>
</tr>
</tbody>
</table>

- Mixed-in Singlet Model: a theory with an extra singlet where the singlet mixes with the SM Higgs through a renormalisable operator.
- Composite Higgs Model: composite Higgs models are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions.
- Minimal Supersymmetry Model: the Minimal Supersymmetric Standard Model (MSSM) exhibits an extended Higgs sector with two Higgs boson doublets, H_d and H_u, which couple to down- and up-type quarks, respectively.
- NMSSM Model: extension of the MSSM adding a mass term μ in a way similar to the generation of quark and lepton masses in the SM.
Latest experimental results

- $-5.0 < \kappa_\lambda < 12.0$ (obs) at 95% CL
- $-5.8 < \kappa_\lambda < 12.0$ (exp) at 95% CL

- $-11.8 < \kappa_\lambda < 18.8$ (obs) at 95% CL
- $-7.1 < \kappa_\lambda < 13.6$ (exp) at 95% CL

ATLAS: ATL-PHYS-PUB-2019-009

- $-3.2 < \kappa_\lambda < 11.9$ (obs) at 95% CL
- $-6.2 < \kappa_\lambda < 14.4$ (exp) at 95% CL

CMS: CMS-PAS-HIG-19-005

- $-3.5 < \kappa_\lambda < 14.5$ (obs) at 95% CL
- $-5.1 < \kappa_\lambda < 13.7$ (exp) at 95% CL
Double-Higgs production: latest results

- The dependences on \(\kappa_\lambda \) of the Higgs boson branching fractions and of the single-Higgs background have been neglected;
- all couplings except the Higgs-boson self-coupling have been set to their SM values;
- exclusion limits have been set after a \(\kappa_\lambda \)-scan on the cross section and a comparison with the theoretical \(\sigma_{ggF}(pp \to HH) \) cross section as a function of \(\kappa_\lambda \).

\[\kappa_\lambda = \frac{\lambda_{\text{HHH}}}{\lambda_{\text{SM}}} \]

ATLAS Internal

\(\sqrt{s} = 13 \text{ TeV} \)

27.5 - 36.1 fb\(^{-1} \)

- Obs.
- Exp. (Exp. stat.)
- -5.0 - 12.0
- -5.8 - 12.0
- (-5.3 - 11.5)

\[
\begin{align*}
\text{HH} & \to b\bar{b}r^+r^- \\
\text{HH} & \to b\bar{b}\gamma \gamma \\
\text{HH} & \to b\bar{b}W^+W^- \\
\text{HH} & \to W^+W^+W^-
\end{align*}
\]

Obs.	Exp.	Exp. stat.
12.5 | 15 | 12
12.9 | 21 | 18
20.3 | 26 | 26
160 | 120 | 77
230 | 170 | 160
305 | 305 | 240

95% CL upper limit on \(\sigma_{ggF}(pp \to HH) \) normalised to \(\sigma_{ggF}^{\text{SM}} \)

- Observed
- Expected ± 1\(\sigma \)
- Expected ± 2\(\sigma \)

eleonora.rossi@cern.ch
The production cross sections σ_i and the branching fractions BR_f normalised to their SM values, i.e. μ_i and μ_f, are parameterised as functions of κ_i:

$$\mu_i(\kappa_i, \kappa_f) = \frac{\sigma_{BSM}^{i}}{\sigma_{SM}^{i}} = Z_{H}^{BSM}(\kappa_i) \left[\left(\frac{(\kappa_i - 1)C_i^f}{K_{EW}^f} \right) \right]$$

$$\mu_f(\kappa_i, \kappa_f) = \frac{\sigma_{BSM}^{i}}{\sigma_{SM}^{i}} \times \frac{BR_f(\kappa_f)}{BR_{SM,f}} = \frac{\sigma_i(\kappa_i)}{\sigma_{SM,i}} \times \frac{BR_f(\kappa_f)}{BR_{SM,f}}$$

- κ_i and κ_f represent multiplicative modifiers to other Higgs boson couplings for initial and final states, parameterised as in the LO κ-framework;
- $K_{EW}^f = \sigma_{NLO}^{SM,i} / \sigma_{LO}^{SM,i}$ accounts for the complete NLO EW correction of the production cross section for the process in the SM hypothesis (i.e. $\kappa_i=1$).

JHEP 1612, 080 (2016)

The results are obtained using ATLAS data corresponding to a luminosity of up to 80 fb$^{-1}$.

Two different inputs, (containing production and decay modes) have been considered:
- one is used for inclusive estimations;
- the second one is profiled in bins of truth-level observables, p_T^H (Simplified Template Cross Sections STXS bins); it can be used for differential estimations; the analysis $VBF \ H \to b \bar{b}$ has been excluded from the input (low impact + no STXS bins).

![Diagram of Single-Higgs production: data and input measurements]

Analysis

- $H \to \gamma\gamma$ (including $t\bar{t}H$, $H \to \gamma\gamma$)
 $p_T^{jj} [0, 200]$
 Integrated luminosity (fb$^{-1}$): 79.8

- $H \to ZZ^* \to 4\ell$ (including $t\bar{t}H$, $H \to ZZ^* \to 4\ell$)
 $p_T^{Hj} [0, 25]$
 $p_T^{Hj} [25, \infty]$
 ≥ 2-jet VBF cuts
 ≥ 2-jet VH cuts
 ≥ 3-jet
 ≥ 3-jet VH cuts
 Rest
 Integrated luminosity (fb$^{-1}$): 36.1

- $H \to \tau\tau$
 Integrated luminosity (fb$^{-1}$): 36.1

- $VH, H \to b\bar{b}$
 Integrated luminosity (fb$^{-1}$): 79.8

- $t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton
 Integrated luminosity (fb$^{-1}$): 36.1

Table 1

<table>
<thead>
<tr>
<th>Analysis</th>
<th>p$_T^{jj}$ [0, 200]</th>
<th>Integrated luminosity (fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \to \gamma\gamma$ (including $t\bar{t}H$, $H \to \gamma\gamma$)</td>
<td>79.8</td>
<td></td>
</tr>
<tr>
<td>$H \to ZZ^* \to 4\ell$ (including $t\bar{t}H$, $H \to ZZ^* \to 4\ell$)</td>
<td>79.8</td>
<td></td>
</tr>
<tr>
<td>$H \to WW^* \to e\nu\nu$</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>$H \to \tau\tau$</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>$VH, H \to b\bar{b}$</td>
<td>79.8</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton</td>
<td>36.1</td>
<td></td>
</tr>
</tbody>
</table>

Section 2: Data and input measurements

The note describes a global fit of cross-sections (σ) and decay rates (Γ) varies according to the production mode and the decay channel. Moreover, these functions depend on the values of the trilinear Higgs self-coupling (λ).

Table 2: Integrated luminosity of the dataset used for each analysis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Integrated luminosity (fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \to \gamma\gamma$ (including $t\bar{t}H$, $H \to \gamma\gamma$)</td>
<td>79.8</td>
</tr>
<tr>
<td>$H \to ZZ^* \to 4\ell$ (including $t\bar{t}H$, $H \to ZZ^* \to 4\ell$)</td>
<td>79.8</td>
</tr>
<tr>
<td>$H \to WW^* \to e\nu\nu$</td>
<td>36.1</td>
</tr>
<tr>
<td>$H \to \tau\tau$</td>
<td>36.1</td>
</tr>
<tr>
<td>$VH, H \to b\bar{b}$</td>
<td>79.8</td>
</tr>
<tr>
<td>$t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton</td>
<td>36.1</td>
</tr>
</tbody>
</table>

Section 3: Theory framework

The note is organized as follows: Section 1 reviews the dataset and input measurements, Section 2 presents the results of the fit, and Section 3 summarizes briefly the theoretical framework.

Section 4: References

The results shown in this note are based on data collected by the ATLAS experiment to each truth-level region defined within the simplified template cross-section framework (σ). It can be used for differential estimations; the analysis is particularly important for the integrated luminosity (σ) ranging from 36.1 fb$^{-1}$ to 79.1 fb$^{-1}$.

References

[20] eleonora.rossi@cern.ch
Single-Higgs production: kinematic dependent coefficients

- The parameterisation of the variation of the production cross-section as a function of κ_λ can be adapted to describe the cross-section in each single STXS region.
- This requires re-deriving the values of the kinematic dependent coefficients C^i_1 in each region defined in the measurement.

Constructived from Figures in arXiv: 1610.07922

<table>
<thead>
<tr>
<th>STXS region</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^i_1 \times 100$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBF + V(had)H</td>
<td>0.63</td>
<td>0.91</td>
<td>1.07</td>
</tr>
<tr>
<td>VBF-cuts + $p_T^{3j} < 200$ GeV, $\leq 2j$</td>
<td>0.61</td>
<td>0.85</td>
<td>1.04</td>
</tr>
<tr>
<td>VBF-cuts + $p_T^{3j} < 200$ GeV, $\geq 3j$</td>
<td>0.64</td>
<td>0.89</td>
<td>1.10</td>
</tr>
<tr>
<td>VH-cuts + $p_T^{3j} < 200$ GeV</td>
<td>0.65</td>
<td>1.13</td>
<td>1.28</td>
</tr>
<tr>
<td>no VBF/VH-cuts, $p_T^{3j} < 200$ GeV</td>
<td>0.39</td>
<td>0.23</td>
<td>0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STXS region</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^i_1 \times 100$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$qq \rightarrow H\ell\nu$</td>
<td>$p_T^V < 150$ GeV</td>
<td>1.15</td>
<td>1.08</td>
</tr>
<tr>
<td>$150 < p_T^V < 250$ GeV, $0j$</td>
<td>0.18</td>
<td>0.33</td>
<td>0</td>
</tr>
<tr>
<td>$150 < p_T^V < 250$ GeV, $\geq 1j$</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T^V > 250$ GeV</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

$\kappa_\lambda = \frac{\text{Secondary Vertex} \cdot \text{Higgs Production}}{\text{Higgs Production}}$
Single-Higgs production: results of fit to κ_{λ}

- Exploiting NLO electroweak corrections to single-Higgs processes, it is possible to extract constraints on κ_{λ} through a global likelihood fit in the range $|\kappa_{\lambda}| < 20$.

- The impact on the κ_{λ} determination of using an inclusive cross-section measurement, rather than the differential cross-section information contained in the STXS bins, has been studied; thus VBF, WH and ZH production modes have been considered as single inclusive bins.

- Compared to the use of differential information, the inclusive fit does not currently lead to a significant loss in sensitivity to κ_{λ}.

Results exploiting differential information

$\kappa_{\lambda} = 4.0^{+4.3}_{-4.1} = 4.0^{+3.7}_{-3.6}$ (stat.) $^{+1.6}_{-1.5}$ (exp.) $^{+1.3}_{-0.9}$ (sig. th.) $^{+0.8}_{-0.9}$ (bkg. th.)

$-3.2 < \kappa_{\lambda} < 11.9$ (obs) at 95% CL

$-6.2 < \kappa_{\lambda} < 14.4$ (exp) at 95% CL

ATLAS Preliminary

$\bar{s} = 13$ TeV, 36.1 - 79.8 fb$^{-1}$
$m_{t}\bar{t} = 125.09$ GeV

- Stat. only
In order to target BSM models where new physics could affect only the Yukawa type terms of the SM ($\kappa_V = 1$) or only the couplings to vector bosons ($\kappa_F = 1$), in addition to the Higgs-boson self-coupling κ_λ, a simultaneous fit is performed to κ_λ and κ_F, and to κ_λ and κ_V; the remaining coupling modifier is kept fixed to the SM prediction.

- The sensitivity is not much degraded when simultaneously fitting κ_λ and κ_F while it is degraded by 50% in the case κ_λ and κ_V.
- An even less constrained fit, performed by fitting simultaneously κ_λ, κ_F and κ_V results in nearly no sensitivity to κ_λ.
HL-LHC projection

- HH analyses currently are very limited by statistics also in its systematic uncertainties (eg. bkg systematics), therefore at HL-LHC they can gain (obviously) a lot in sensitivity.

- The gain for single Higgs is not so enhanced by the increasing of luminosity since at a certain point it becomes limited by systematic uncertainties, that in the HL-LHC projection are not so much reduced.

- Differential information has a great impact on the measurement.

HL-LHC prospects, Yellow Report results

CERN-LPCC-2018-04

eleonora.rossi@cern.ch

05/05/2020