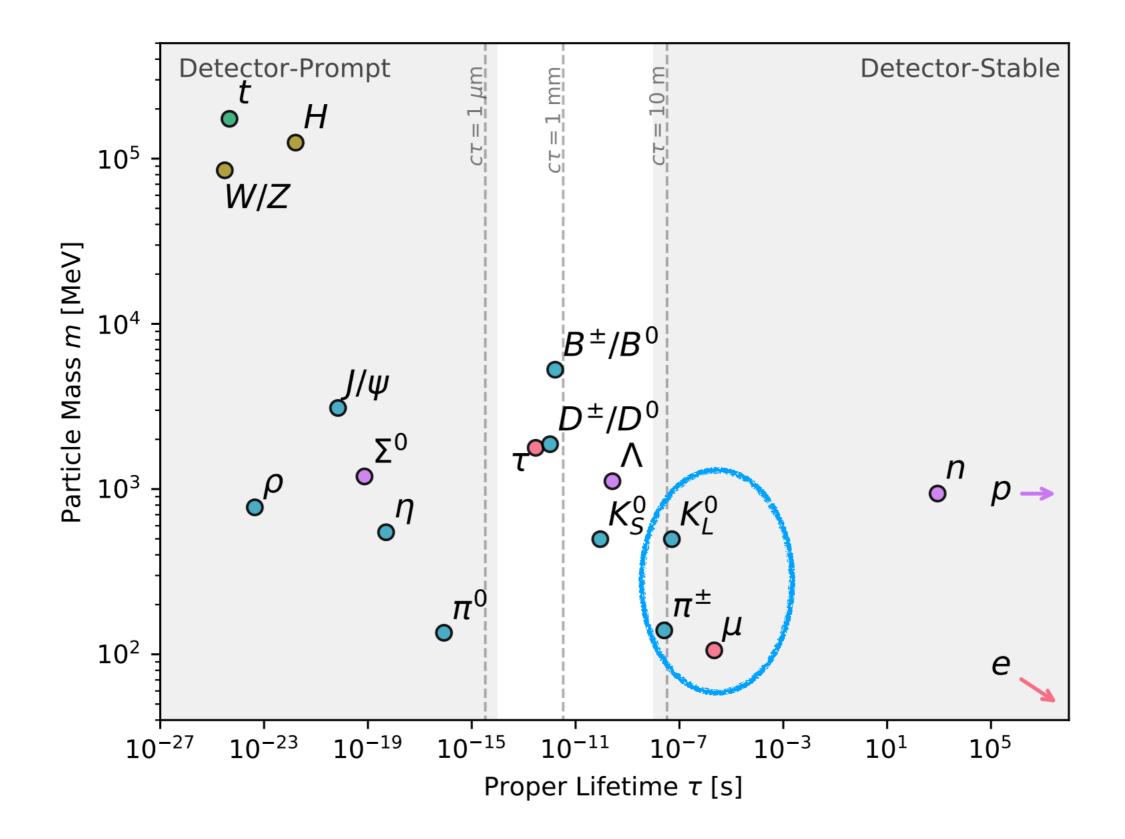
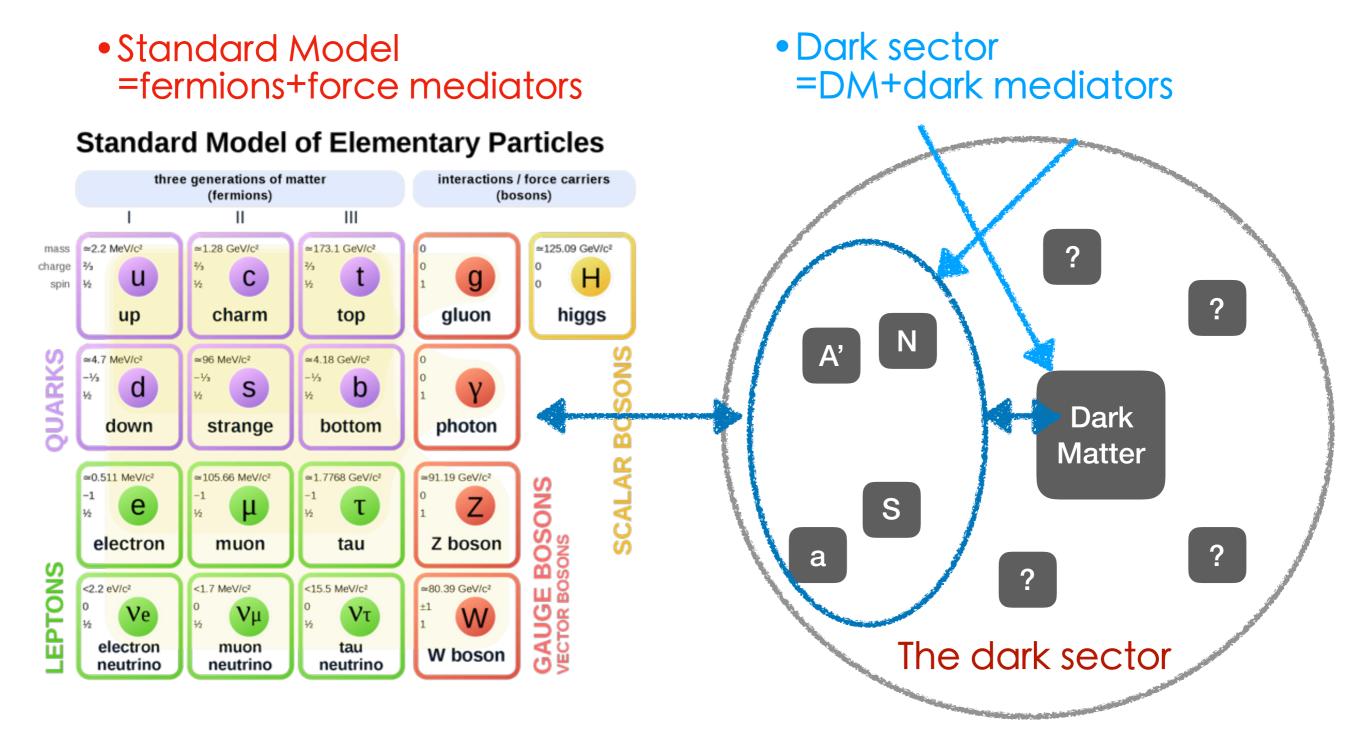
$\frac{\text{PHENO}}{2020}$

FROM THE INFRARED TO THE ULTRAVIOLET

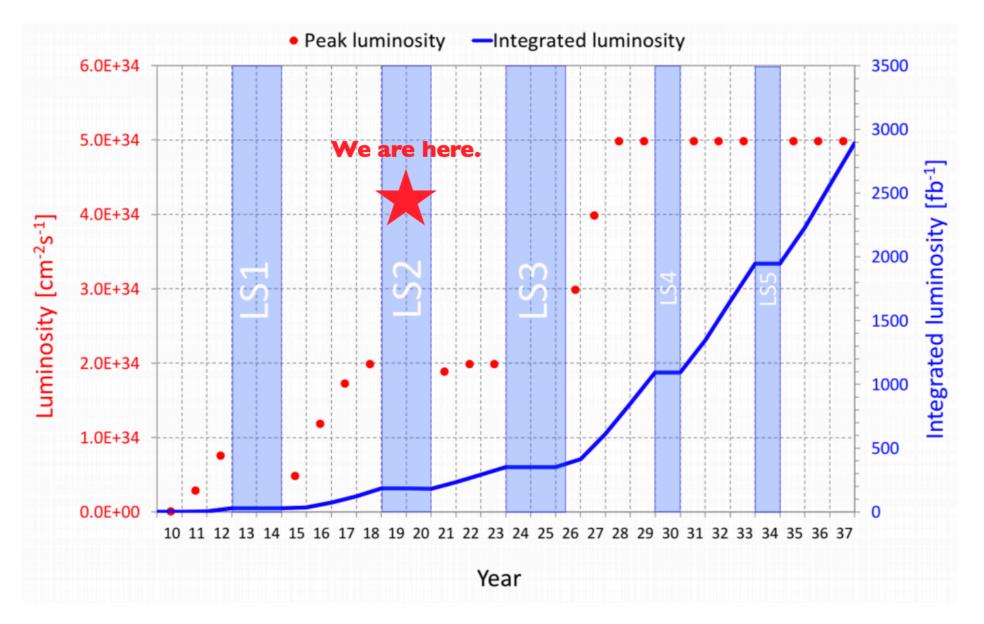
Long-lived particle Searches at LHC




Xiao-Ping Wang Argonne National Laboratory

Collaborated with Jia Liu, Zhen Liu and Lian-Tao Wang May 4 2020

Why Long-lived Particles?

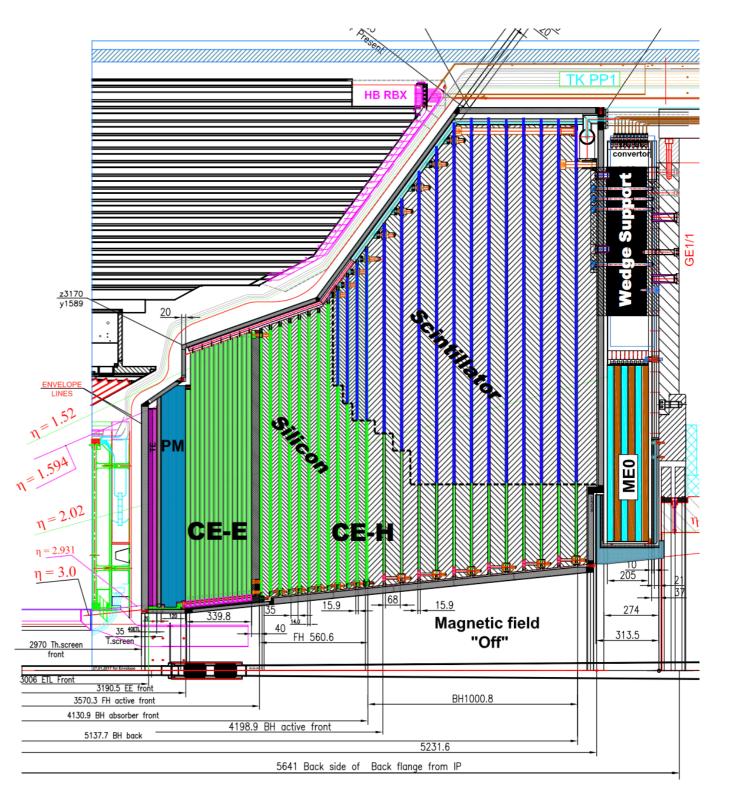


Why Long-lived Particles?

• Not a surprise: dark sector particles have a wide spread in lifetime

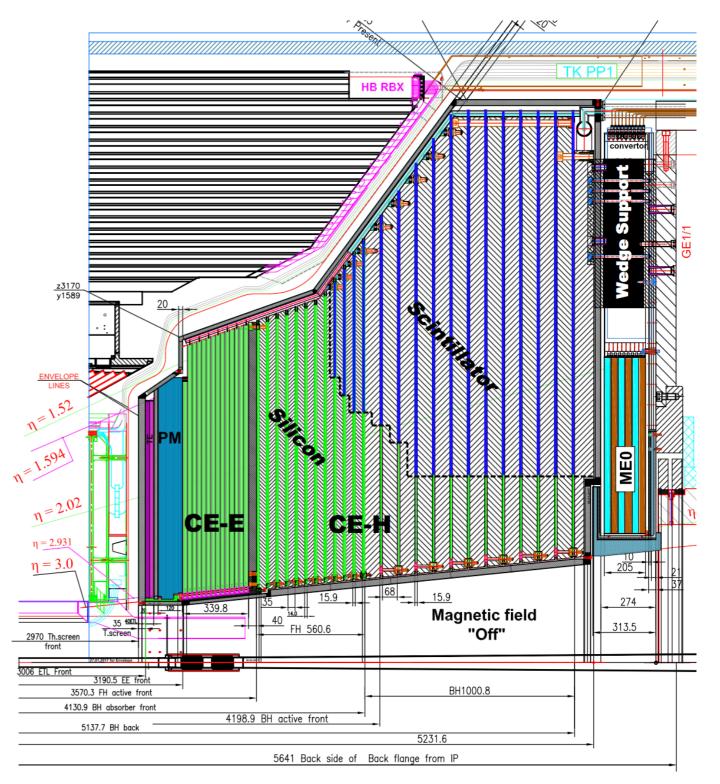
Why Looking for Long-lived Particle at LHC?

- LHC will accumulate more data
- Exp collaborations have broad physics programs: SUSY, composite H, extra Dim, etc.
- New directions?


Why Looking for Long-lived Particle at LHC?

- Physics potential from a lot of new data
 - Very rare signal
 - E.g. dark sector, rare decays, ...
 - More data can help ducing systematics
 - Precision measurements

An important example: Long-lived particles

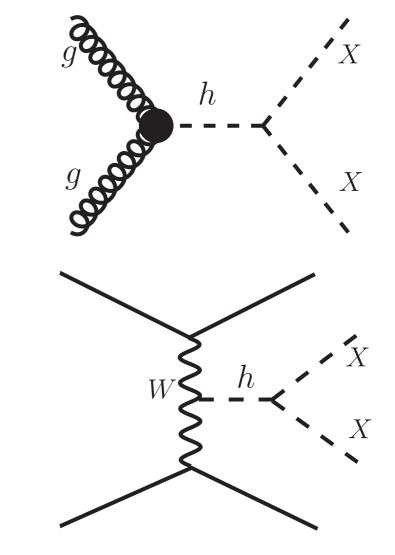

CMS High Granularity Calorimeter

- Motivation
 - Upgrade for radiation tolerance and pile-up
 - Tracker, calorimeter and timing integrated in one detector
 - Will provide much more information than any previous calorimeters

LLP motivation @ HGCAL

- Own triggers
- Tracker with silicon cell 0.5~1 cm² for EM
- Angular resolution of 5x10⁻³ rad stand-alone from high granularity (improvement by combining with ID trackers)
- Timing resolution ~ 25 ps from silicon sensor
- Semi-central coverage good for forward LLP Collinear enhancement Pt PS suppression

What is the HGCAL sensitivity for LLP?


LLP Model

• Higgs portal LLP: a very small mixing

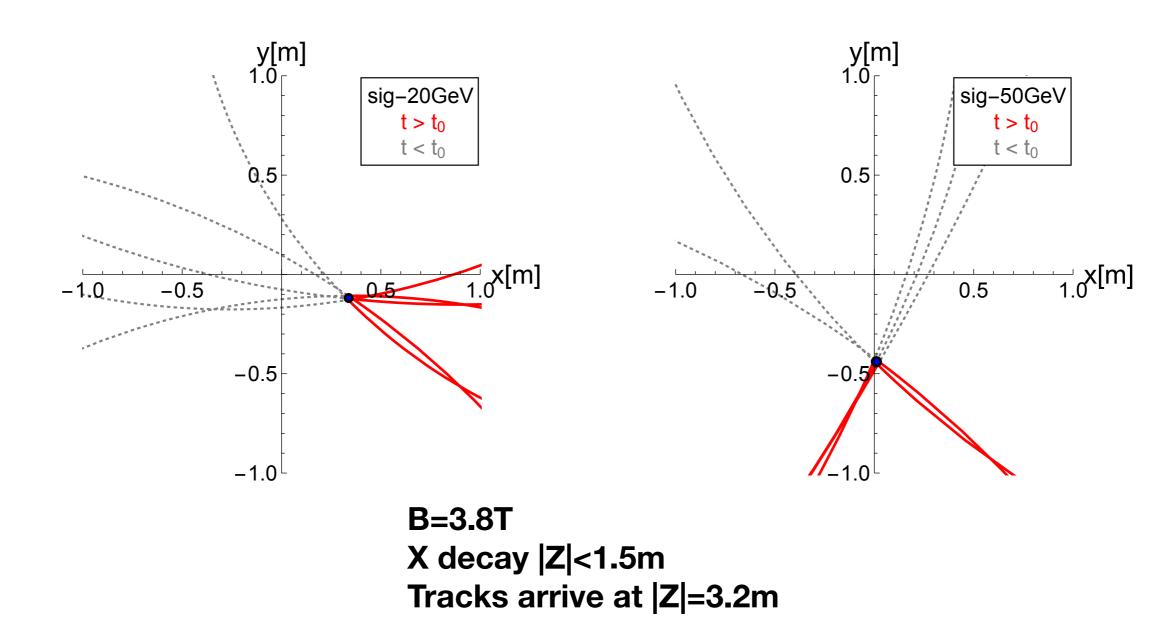
 $\mathcal{L}\supset\lambda X^2H^\dagger H$

- LLP production from Higgs decay
 - Gluon fusion
 - Vector boson fusion
 - LLP decay

$$X \to \bar{b}b$$

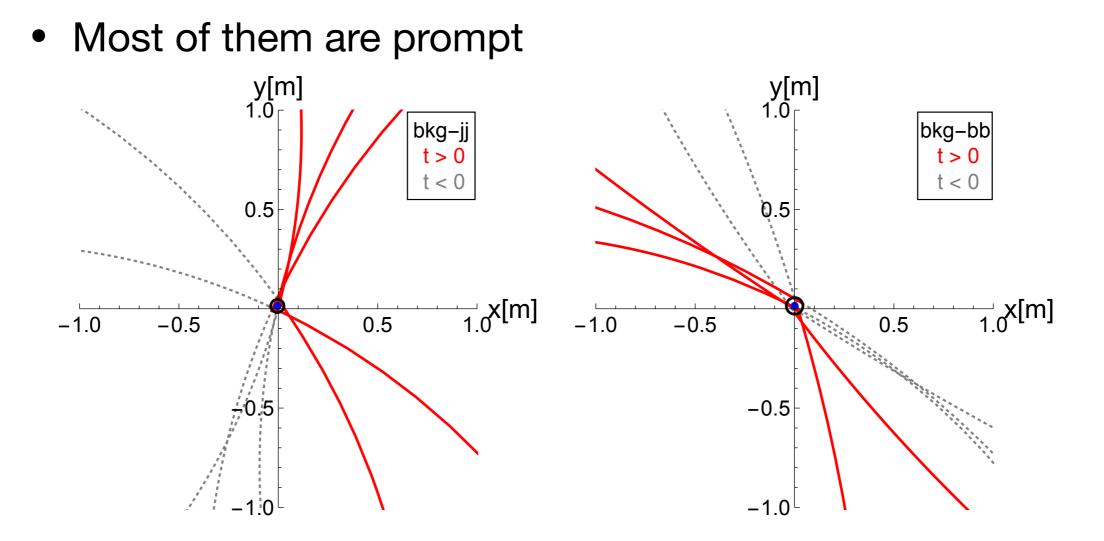
 Trigger: displaced track trigger with/without large H_T requirement, and traditional VBF trigger

The Search Strategy


- Choose the leading 5 tracks (Pythia, p_T, hitting HGCAL) and calculate the 4D trajectories (including angular resolution effect)
- Perform a 2D track bundle vertex finder by minimizing the quantity

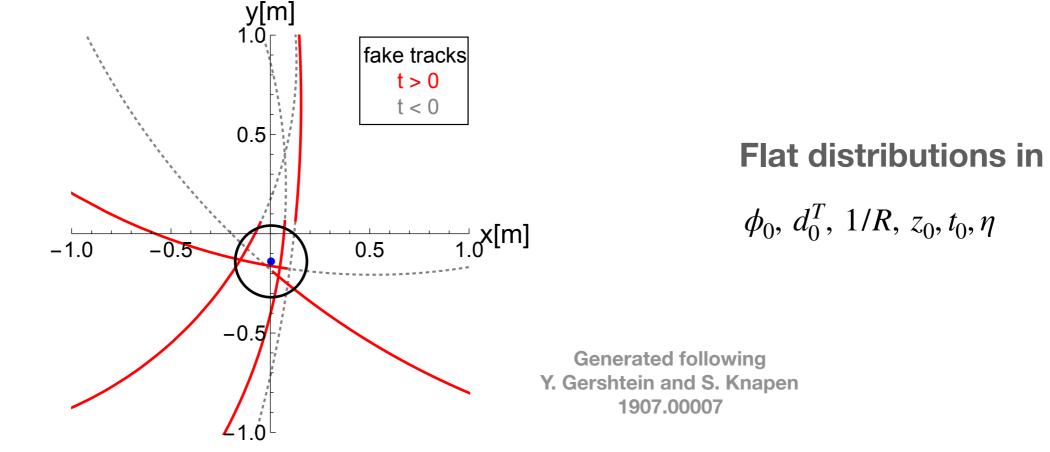
$$\Delta \mathbf{D} \equiv \sqrt{\sum_{i=1}^{5} \left(\sqrt{(x - x_i^{\text{cen}})^2 + (y - y_i^{\text{cen}})^2} - R_i \right)^2}$$

- R_i is the curvature of the ith track, {x^{cen}, y^{cen}} are the center of the track
- We obtain the fitted DV {x, y}, and define $r_{\rm DV} = \sqrt{x^2 + y^2}$
- The goodness of fit ΔD_{min}
- With the angular velocity of the track, we can determine the referencing point to DV for each track {x_i, y_i, z_i, t_i}
- A time delay quantity can be defined $\Delta t_i = t_i \sqrt{x_i^2 + y_i^2 + z_i^2}$


The signature of the signal

 Multiple tracks with large impact parameters from the same displaced origin

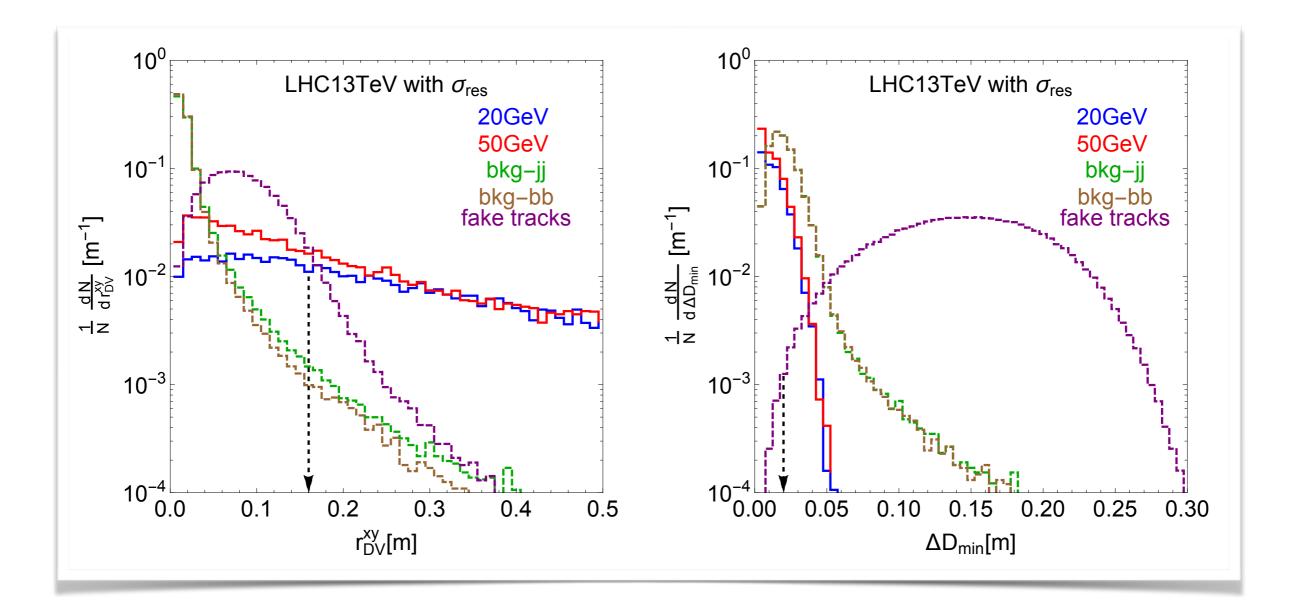
The SM Backgrounds


• QCD backgrounds

- Large impact parameter dominantly from $K_S(c\tau \sim 2.7 \text{ cm})$
 - B (ct ~ 0.045 m) and D meson (ct ~ 0.03 m) too small

The SM Backgrounds

- Fake track backgrounds
 - wrong connection of the hitting points in the tracker system

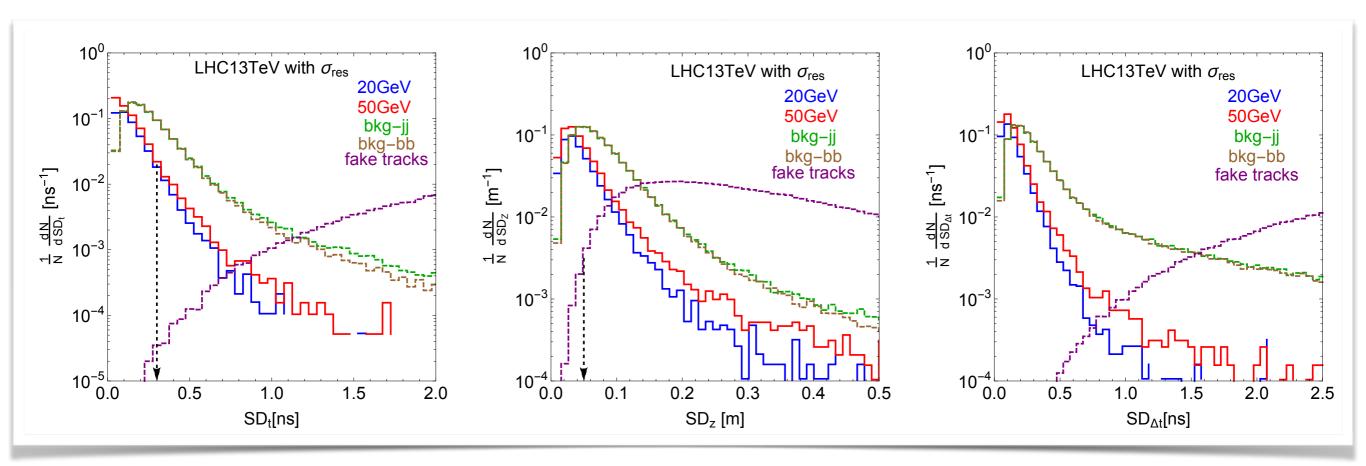


- Very distinct features comparing with QCD backgrounds
 - Easy to have large impact parameter
 - Poorly fit to the same origin

Kinematic Features

Check the kinematic distribution for

 $r_{DV},\ \Delta D_{min},\ \bar{t},\ \bar{z},\ \overline{\Delta t},\ SD_t,\ SD_z,\ SD_{\Delta t}.$



Kinematic Features

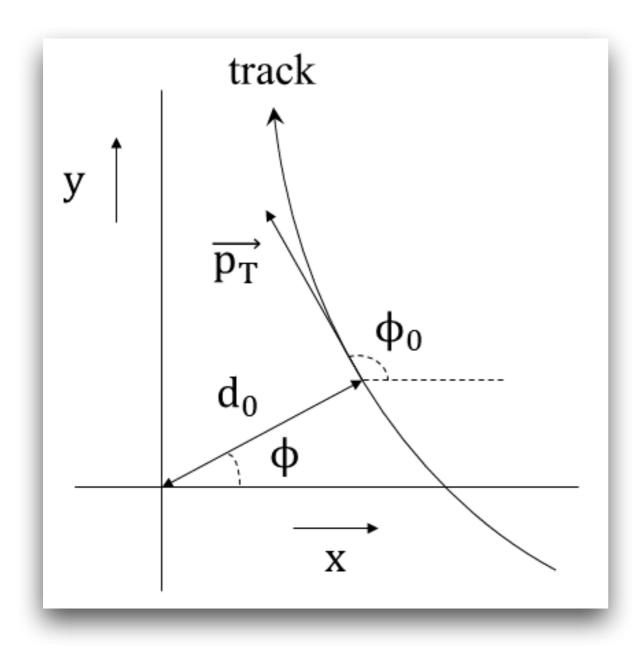
Check the kinematic distribution for

 $r_{DV},\ \Delta D_{min},\ \bar{t},\ \bar{z},\ \overline{\Delta t},\ SD_t,\ SD_z,\ SD_{\Delta t}.$

Standard Deviation of the tracks quantities

The Cut Flow Table

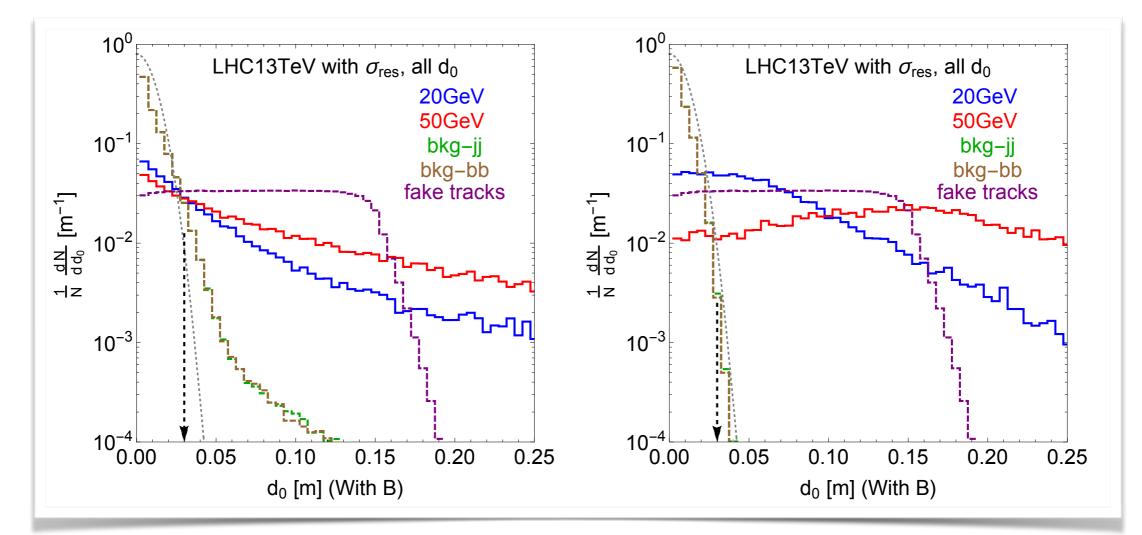
- QCD bkg: p_T>20GeV with jet matching
- Fake track bkg: five displaced tracks and H_T>100GeV L1 trigger rate of 10 kHz (same as Yuri and Simon), HL-LHC 10⁸ sec


type of bkg	N _{ini}	5 tracks	$r_{\rm DV}^{\rm xy} > 0.16~{\rm m}$	$\Delta D_{\rm min} < 0.02~{\rm m}$	$\bar{t} > 1 \text{ ns}$	$\mathrm{SD_t} < 0.3 \mathrm{~ns}$
jj dijet	5.1×10^{14}	9.4×10^{-1}	$1.0 \times 10^{-2} (*)$	$8.7 imes 10^{-1}$	$3.0 \times 10^{-2} (*)$	7.3×10^{-1}
$b\overline{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} (*)$	9.2×10^{-1}	$2.4 \times 10^{-2} (*)$	7.4×10^{-1}
fake track	1×10^{12}	$5.6 imes 10^{-1}$	4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}
gg F $m_s=20~{\rm GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36 \times 3.1 \times 10^{-1}$	$5.3 imes 10^{-1}$	$8.6 imes 10^{-1}$	9.9×10^{-1}	9.6×10^{-1}
$ggFm_s = 50 \text{ GeV}$	$1.3 imes 10^8 \mathrm{BR}$	$0.8 imes 3.5 imes 10^{-1}$	$3.5 imes 10^{-1}$	$8.8 imes 10^{-1}$	$9.8 imes 10^{-1}$	$9.5 imes 10^{-1}$
	jj dijet $b\overline{b}$ dijet fake track ggF $m_s = 20$ GeV	jj dijet 5.1×10^{14} $b\bar{b}$ dijet 1.1×10^{13} fake track 1×10^{12} ggF $m_s = 20$ GeV 1.3×10^8 BR	jj dijet 5.1×10^{14} 9.4×10^{-1} $b\bar{b}$ dijet 1.1×10^{13} 1.0 fake track 1×10^{12} 5.6×10^{-1}	jj dijet 5.1×10^{14} 9.4×10^{-1} 1.0×10^{-2} (*) $b\bar{b}$ dijet 1.1×10^{13} 1.0 7.7×10^{-3} (*) fake track 1×10^{12} 5.6×10^{-1} 4.6×10^{-2} ggF $m_s = 20$ GeV 1.3×10^8 BR $0.36 \times 3.1 \times 10^{-1}$ 5.3×10^{-1}	jj dijet 5.1×10^{14} 9.4×10^{-1} 1.0×10^{-2} (*) 8.7×10^{-1} $b\bar{b}$ dijet 1.1×10^{13} 1.0 7.7×10^{-3} (*) 9.2×10^{-1} fake track 1×10^{12} 5.6×10^{-1} 4.6×10^{-2} 2.2×10^{-3} ggF $m_s = 20 \text{ GeV}$ $1.3 \times 10^8 \text{BR}$ $0.36 \times 3.1 \times 10^{-1}$ 5.3×10^{-1} 8.6×10^{-1}	jj dijet 5.1×10^{14} 9.4×10^{-1} 1.0×10^{-2} (*) 8.7×10^{-1} 3.0×10^{-2} (*) $b\bar{b}$ dijet 1.1×10^{13} 1.0 7.7×10^{-3} (*) 9.2×10^{-1} 2.4×10^{-2} (*)fake track 1×10^{12} 5.6×10^{-1} 4.6×10^{-2} 2.2×10^{-3} 2.8×10^{-2} ggF $m_s = 20 \text{ GeV}$ $1.3 \times 10^8 \text{BR}$ $0.36 \times 3.1 \times 10^{-1}$ 5.3×10^{-1} 8.6×10^{-1} 9.9×10^{-1}

Pre-cuts for DV fitting

										AMME I AN BURGE I S. F. I SPO		
						1145305417411453054774		300 1402 FAI BARNOV 402 FAI BAR				
type of bkg	$N_{ m ini}$	5 tracks	r_{I}^{x}	$_{\rm V}^{\rm y} > 0.16 {\rm m}$	$\Delta D_{\min} < 0.02 \text{ m}$	$\bar{t} > 1 \text{ ns}$	$\rm SD_t < 0.3 \ ns$	$\bar{z} > 0.4 \text{ m}$	$ SD_z < 0.05 m $	$\epsilon_{ m vtc}$	$(d_0^T > 0.03 \text{ m})^5$	N _{fin}
jj dijet	$5.1 imes 10^{14}$	9.4×10^{-1}	1.	$0 \times 10^{-2} \; (*)$	$8.7 imes 10^{-1}$	$3.0 \times 10^{-2} \; (*)$	$7.3 imes 10^{-1}$	$3.4 \times 10^{-2} (*)$	$4.9 imes 10^{-1}$	3.0×10^{-1}	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$b\bar{b}$ dijet	1.1×10^{13}	1.0	7.	$7 \times 10^{-3} (*)$	9.2×10^{-1}	$2.4 \times 10^{-2} (*)$	7.4×10^{-1}	$2.7 \times 10^{-2} (*)$	$4.9 imes 10^{-1}$	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
fake track	1×10^{12}	5.6×10^{-1}		4.6×10^{-2}	2.2×10^{-3}	2.8×10^{-2}	6.2×10^{-5}	$5.9 imes 10^{-2}$	5.4×10^{-3}	5.8×10^{-13}	3.4×10^{-1}	1.1×10^{-1}
ggF $m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36\times 3.1\times 10^{-1}$		5.3×10^{-1}	8.6×10^{-1}	9.9×10^{-1}	$9.6 imes 10^{-1}$	$9.8 imes 10^{-1}$	$8.6 imes10^{-1}$	1.2×10^{-1}	$2.9 imes 10^{-1}$	$4.3 \times 10^6 \times \mathrm{BR}$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8\times 3.5\times 10^{-1}$		3.5×10^{-1}	8.8×10^{-1}	9.8×10^{-1}	$9.5 imes 10^{-1}$	$8.9 imes 10^{-1}$	$8.6 imes 10^{-1}$	$9.0 imes 10^{-2}$	$8.0 imes 10^{-1}$	$9.5 \times 10^6 \times \mathrm{BR}$
·					####################################							·

• Fake track bkg suppressed because its random origin


Impact Parameter

$$d_0 = \sqrt{x^2 + y^2 - \frac{(xp_x + yp_y)^2}{p_x^2 + p_y^2}}$$

Kinematic Features

• Transverse impact parameters

- QCD bkg has a good Gaussian shape because pre-cuts excludes K_S meson decays
- Gaussian width comes from angular resolution
 3 m x 5x10⁻³ rad = 0.015 m

Independence Check is Necessary

- QCD bkg: impact parameter cuts are independent?
 - Should be, because they are from angular resolution smearing

									1		MINDUARDINGLOS. AUSTROBIOSLOSA
type of bkg	$N_{ m ini}$	5 tracks	$r_{\rm DV}^{\rm xy} > 0.16~{\rm m}$	$\Delta D_{\rm min} < 0.02~{\rm m}$	$\bar{t} > 1$ ns	$\mathrm{SD_t} < 0.3~\mathrm{ns}$	$\bar{z} > 0.4 \text{ m}$	$\mathrm{SD_z} < 0.05~\mathrm{m}$	$\epsilon_{ m vtc}$	$(d_0^T > 0.03 \ {\rm m})^5$	N_{fin}
jj dijet	5.1×10^{14}	9.4×10^{-1}	1.0×10^{-2} (*)	$8.7 imes 10^{-1}$	$3.0 \times 10^{-2} (*)$	$7.3 imes 10^{-1}$	3.4×10^{-2} (*)	$4.9 imes 10^{-1}$	$3.0 imes 10^{-1}$	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$b\bar{b}$ dijet	1.1×10^{13}	1.0	$7.7 \times 10^{-3} (*)$	9.2×10^{-1}	$2.4 \times 10^{-2} (*)$	$7.4 imes 10^{-1}$	2.7×10^{-2} (*)	$4.9 imes 10^{-1}$	2.9×10^{-1}	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
fake track	1×10^{12}	5.6×10^{-1}	$4.6 imes 10^{-2}$	2.2×10^{-3}	$2.8 imes 10^{-2}$	$6.2 imes 10^{-5}$	$5.9 imes10^{-2}$	$5.4 imes 10^{-3}$	5.8×10^{-13}	$3.4 imes 10^{-1}$	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36\times 3.1\times 10^{-1}$	$5.3 imes 10^{-1}$	8.6×10^{-1}	$9.9 imes 10^{-1}$	$9.6 imes 10^{-1}$	$9.8 imes 10^{-1}$	8.6×10^{-1}	$1.2 imes 10^{-1}$	$2.9 imes 10^{-1}$	$4.3 \times 10^6 \times \mathrm{BR}$
$ggFm_s = 50 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8\times 3.5\times 10^{-1}$	$3.5 imes 10^{-1}$	$8.8 imes 10^{-1}$	$9.8 imes 10^{-1}$	$9.5 imes 10^{-1}$	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	$8.0 imes 10^{-1}$	$9.5 \times 10^6 \times BR$

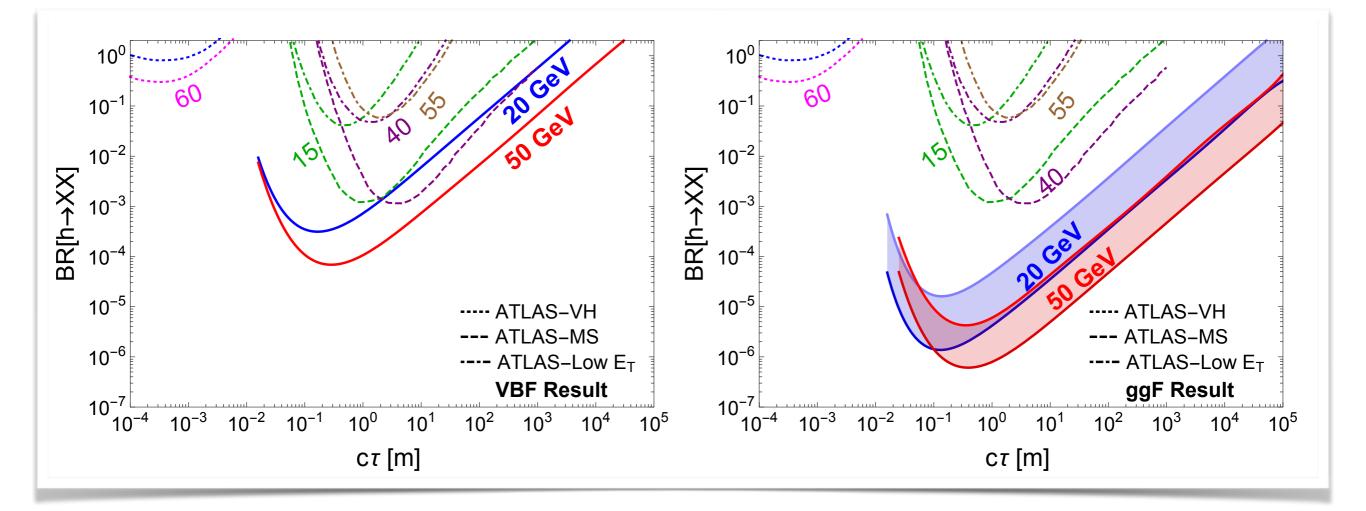
Independence Check is Necessary

- QCD bkg: impact parameter cuts are independent?
 - Should be, because they are from angular resolution smearing

									4	******************************	
type of bkg	$N_{ m ini}$	5 tracks	$r_{\rm DV}^{\rm xy} > 0.16~{\rm m}$	$\Delta D_{\rm min} < 0.02~{\rm m}$	$\bar{t} > 1$ ns	$\mathrm{SD}_{\mathrm{t}} < 0.3~\mathrm{ns}$	$\bar{z} > 0.4~{\rm m}$	$\rm SD_z < 0.05~m$	$\epsilon_{ m vtc}$	$(d_0^T>0.03~{\rm m})^5$	N_{fin}
jj dijet	5.1×10^{14}	9.4×10^{-1}	$1.0\times 10^{-2}~(*)$	8.7×10^{-1}	$3.0 \times 10^{-2} (*)$	$7.3 imes 10^{-1}$	3.4×10^{-2} (*)	$4.9 imes 10^{-1}$	$3.0 imes 10^{-1}$	$(7.2 \times 10^{-4})^5$	2.8×10^{-2}
$b\bar{b}$ dijet	1.1×10^{13}	1.0	7.7×10^{-3} (*)	9.2×10^{-1}	$2.4 \times 10^{-2} (*)$	$7.4 imes 10^{-1}$	2.7×10^{-2} (*)	4.9×10^{-1}	$2.9 imes 10^{-1}$	$(6.5 \times 10^{-4})^5$	3.7×10^{-4}
fake track	1×10^{12}	5.6×10^{-1}	4.6×10^{-2}	2.2×10^{-3}	$2.8 imes 10^{-2}$	$6.2 imes 10^{-5}$	$5.9 imes10^{-2}$	$5.4 imes 10^{-3}$	5.8×10^{-13}	$3.4 imes 10^{-1}$	1.1×10^{-1}
$ggF m_s = 20 \text{ GeV}$	$1.3 \times 10^8 \mathrm{BR}$	$0.36\times 3.1\times 10^{-1}$	$5.3 imes 10^{-1}$	8.6×10^{-1}	$9.9 imes 10^{-1}$	$9.6 imes 10^{-1}$	$9.8 imes 10^{-1}$	8.6×10^{-1}	1.2×10^{-1}	$2.9 imes 10^{-1}$	$4.3 \times 10^6 \times BR$
$\boxed{\text{ggF}m_s = 50 \text{ GeV}}$	$1.3 \times 10^8 \mathrm{BR}$	$0.8\times 3.5\times 10^{-1}$	$3.5 imes 10^{-1}$	$8.8 imes 10^{-1}$	$9.8 imes 10^{-1}$	$9.5 imes 10^{-1}$	8.9×10^{-1}	8.6×10^{-1}	9.0×10^{-2}	8.0×10^{-1}	$9.5 \times 10^6 \times \mathrm{BR}$
					•		•		•		

Independence check

$$\text{IDd}_n \equiv \frac{\epsilon^n (1 \text{ track } d_0^T > 0.03 \text{m})}{\epsilon (\text{n tracks } d_0^T > 0.03 \text{m})}$$


- ~1 independent, >1 conservative
- In summary, \geq 1 is conservative for bkg estimation

Independence Check

- QCD bkg: impact parameter for tracks are independent
 - angular resolution smearing is independent for each track

jj dijets	$d_0^T > 0.01 \text{ m}$	$d_0^T > 0.015 \text{ m}$	$d_0^T > 0.02~\mathrm{m}$	$d_0^T > 0.025 \text{ m}$	$d_0^T > 0.03~\mathrm{m}$
IDd ₁	0.96	0.95	1.0	1.1	1.3
IDd ₂	1.0	1.1	0.87	-	-
IDd ₃	1.2	0.95	-	-	-
IDd ₄	1.1	-	-	-	-
IDd ₅	0.9	-	-	-	-
$\overline{b}b$ dijets	$d_0^T > 0.01~\mathrm{m}$	$d_0^T > 0.015~\mathrm{m}$	$d_0^T > 0.02~\mathrm{m}$	$d_0^T > 0.025~\mathrm{m}$	$d_0^T > 0.03~\mathrm{m}$
IDd ₁	0.96	0.95	0.98	1.12	1.8
IDd ₂	1.1	1.2	1.1	-	-
IDd ₃	1.3	0.90	-	-	-
IDd ₄	1.2	1.1	-	-	-
IDd ₅	1.1	-	-	-	-

The Preliminary Results for HL-LHC

- ggF result: with/without high H_T trigger requirement
- VBF result: standard VBF trigger

