Muonium-Antimuonium Oscillations in Effective Field Theory

Renae Conlin
au9969@wayne.edu

Department of Physics and Astronomy
with: Alexey Petrov

WAYNE STATE

UNIVERSITY

Outline

- Motivation
- Muonium Oscillation Formalism
- Calculation of mixing parameters Δm and $\Delta \Gamma$
- Summary

Motivation

- Neutrino's mix and change flavor - must have non-zero mass
- This can lead to flavor violating processes in the charged lepton sector
- Lepton flavor violating (LFV) processes are highly suppressed in the standard model, e.g. $\mu \rightarrow e \gamma \operatorname{Br}(\mu \rightarrow e \gamma)_{S M} \sim 10^{-54}$
- LFV processes are highly suppressed in the standard model

\Rightarrow no background for NP!
- LFV processes are searched for in various processes:
- $\Delta L_{\mu}=1: \mu \rightarrow e \gamma, \mu \rightarrow e e e$ and $\mu+N \rightarrow e+N$
- $\Delta L_{\mu}=2$: Muonium anti-muonium oscillations
- In some models we can expect $\Delta L_{\mu}=2$ contributions to be the dominant ones, e.g. doubly charged Higgs has a tree level contribution to $\Delta L_{\mu}=2$, but not to $\mu \rightarrow e \gamma$

Muonium Oscillations: $M \rightarrow \bar{M}$

- Muonium is a non-relativistic Coulombic bound state of an anti-muon μ^{+}and an electron e
- Can be Spin-0 (singlet): para-muonium
- Spin-1 (triplet): ortho-muonium
- An oscillation is the process

$$
M\left(\mu^{+} e^{-}\right) \rightarrow \bar{M}\left(\mu^{-} e^{+}\right)
$$

- It violates muon lepton number by two units $\Delta L_{\mu}=2$, i.e.: it can probe different types of NP than $\mu \rightarrow e \gamma$ or $\mu+N \rightarrow e+N$
- Conversion rate was calculated in several NP models with heavy DOF

Muonium Oscillation Formalism

- An effective theory approach: all possible heavy NP models
- Most general Lagrangian
- c_{i}^{\prime} 's are the Wilson coefficients

$$
\mathscr{L}_{e f f}=-\frac{1}{\Lambda^{2}} \sum_{i} c_{i}(\mu) Q_{i}
$$

- Determined by the (UV) physics at some NP scale Λ
- Q_{i} 's are the dimension-six operators
- Reflect degrees of freedom relevant at the scale in which a process takes place

Muonium Oscillation Formalism

- Similar to meson-antimeson oscillations, but unlike $K \bar{K}$ or $B \bar{B}$ oscillations both spin-0 and spin-1 states can oscillate
- The time development of M and \bar{M} are coupled and is given by a Schrödinger equation

$$
i \frac{d}{d t}\binom{|M(t)\rangle}{|\bar{M}(t)\rangle}=\left(m-i \frac{\Gamma}{2}\right)\binom{|M(t)\rangle}{|\bar{M}(t)\rangle}
$$

m and Γ are 2×2 Hermitian matrices:
the mass matrix and the decay matrix

- Assume CPT invariance, then the diagonal and off diagonal elements are

$$
m_{11}=m_{22}, \quad \Gamma_{11}=\Gamma_{22}
$$

$$
m_{12}=m_{21}^{*}, \quad \Gamma_{12}=\Gamma_{21}^{*}
$$

Muonium Oscillation Formalism

- The off diagonal element of this matrix is given by

$$
\left(m-\frac{i}{2} \Gamma\right)_{12}=\frac{1}{2 M_{M}}\langle\bar{M}| \mathscr{H}^{\Delta L_{\mu}=2}|M\rangle+\frac{1}{2 M_{M}} \sum_{n} \frac{\langle\bar{M}| \mathscr{H}^{\Delta L_{\mu}=1}|n\rangle\langle n| \mathscr{H}^{\Delta L_{\mu}=1}|M\rangle}{M_{M}-E_{n}+i \epsilon}
$$

- Since $\left(m-i \frac{\Gamma}{2}\right)_{12} \neq 0$ then M and \bar{M} are not mass eigenstates: diagonalize!
- The CP conserving mass eigenstates, M_{1} and M_{2}, are linear combinations of M and \bar{M}

$$
\left|M_{1,2}\right\rangle=\frac{1}{\sqrt{2}}(|M\rangle \pm|\bar{M}\rangle)
$$

Muonium Oscillation Time Evolution

- Time development of M and \bar{M}

$$
\begin{aligned}
|M(t)\rangle=g_{+}(t)|M\rangle+g_{-}(t)|\bar{M}\rangle \quad & |\bar{M}(t)\rangle=g_{-}(t)|M\rangle+g_{+}(t)|\bar{M}\rangle \\
& \text { Where, } \quad g_{ \pm}(t)=\frac{1}{2} e^{-\Gamma_{1} t / 2} e^{-i m_{1} t}\left[1 \pm e^{-\Delta \Gamma t / 2} e^{i \Delta m t}\right]
\end{aligned}
$$

- Mass eigenstates M_{1} and M_{2} has mass difference (Δm), and width difference ($\Delta \Gamma$)
$\Delta m \equiv m_{1}-m_{2}, \quad \Delta \Gamma \equiv \Gamma_{2}-\Gamma_{1} \quad x=\frac{\Delta m}{\Gamma} \quad y=\frac{\Delta \Gamma}{2 \Gamma} \quad$ but $x, y \ll 1$
- Dependence on x and y !

$$
\frac{\Gamma(M \rightarrow \bar{f})}{\Gamma(\bar{M} \rightarrow \bar{f})} \sim R(x, y), \quad R(x, y)=\frac{1}{4}\left(x^{2}+y^{2}\right)
$$

$$
\left.\Gamma(M \rightarrow \bar{f})(t)=N_{f}|\langle\bar{f}| S| M(t)\right\rangle\left.\right|^{2}
$$

$$
\left.\Gamma(\bar{M} \rightarrow \bar{f})(t)=N_{f}|\langle\bar{f}| S| \bar{M}(t)\right\rangle\left.\right|^{2}
$$

Calculation of Matrix Elements

- Our $\Delta L_{\mu}=2$ Lagrangian

$$
\mathscr{L}_{e f f}^{\Delta L_{H}=2}=-\frac{1}{\Lambda_{1}^{2}} \sum_{i} C_{i}(\mu) Q_{i}(\mu)
$$

- Most general set of operators, Q_{i} 's

$$
\begin{aligned}
& Q_{1}=\left(\bar{\mu} \gamma_{\alpha} P_{L} e\right)\left(\bar{\mu} \gamma^{\alpha} P_{L} e\right), Q_{2}=\left(\bar{\mu} \gamma_{\alpha} P_{R} e\right)\left(\bar{\mu} \gamma^{\alpha} P_{R} e\right), \\
& Q_{3}=\left(\bar{\mu} \gamma_{\alpha} P_{L} e\right)\left(\bar{\mu} \gamma^{\alpha} P_{R} e\right), \\
& Q_{4}=\left(\bar{\mu} P_{R} e\right)\left(\bar{\mu} P_{R} e\right), Q_{5}=\left(\bar{\mu} P_{L} e\right)\left(\bar{\mu} P_{L} e\right)
\end{aligned}
$$

- Other possible structures can be Fierz'd into the operators above

Calculation of Matrix Elements

- Matrix element m_{12}

$$
m_{12}=\langle\bar{M}|-\mathscr{L}_{e f f}^{\Delta L_{\mu}=2}|M\rangle=\sum_{i} \frac{C_{i}}{\Lambda_{1}^{2}}\langle\bar{M}| Q_{i}|M\rangle
$$

- Muonium is a non-relativistic Coulombic bound state

$$
|M(0)\rangle=\sqrt{2 E_{\mathbf{q}}^{2} E_{-\mathbf{q}}} \int \frac{d^{3} q}{(2 \pi)^{3}} \tilde{\mu}(q) a_{\mathbf{q}}^{(e) \dagger} b_{-\mathbf{q}}^{(\mu) \dagger}|0\rangle
$$

$\tilde{\psi}(q)$ is the Fourier transform of the spatial wave function $\psi(x)$

- Perturbative QED bound state: can calculate!

Calculation of Matrix Elements

Example:

$$
Q_{1}=\left(\bar{\mu} \gamma_{\alpha} P_{L} e\right)\left(\overline{\mu \gamma}{ }^{\alpha} P_{L} e\right)
$$

$$
\langle\bar{M}| Q_{1}|M\rangle=4\left(\bar{u} \gamma^{\alpha} P_{L} v\right)\left(\bar{v} \gamma_{\alpha} P_{L} u\right)\left|\int \frac{d^{3} q}{(2 \pi)^{3}} \tilde{\psi}(q)\right|^{2} \quad \text { Where, }\left|\int \frac{d^{3} q}{(2 \pi)^{4}} \tilde{\mu}(q)\right|^{2}=\frac{1}{4 m_{\mu} m_{e}}|\psi(0)|^{2}
$$

non-relativistic spinors

$$
\begin{array}{r}
u=\sqrt{m_{e}}\binom{\xi}{\xi}, \\
v=\sqrt{m_{e}}\binom{\eta}{-\eta}, \\
\bar{u}=\sqrt{m_{\mu}}\left(\xi^{\dagger}, \xi^{\dagger}\right) \gamma^{o}, \quad \bar{v}=\sqrt{m_{\mu}}\left(\eta^{\dagger},-\eta^{\dagger}\right) \gamma^{o}
\end{array}
$$

spinor products: spin-0, spin-1 Spin-1 with 3 possible polarizations

$$
\xi \eta^{\dagger}=\frac{1}{\sqrt{2}} \mathbf{1}_{2 \times 2} \quad \eta \xi^{\dagger}=\frac{1}{\sqrt{2}} \vec{\epsilon}^{*} \cdot \vec{\sigma}
$$

$$
\langle\bar{M}| Q_{1}|M\rangle_{\text {spin-0 }}=2|\psi(0)|^{2} \quad\langle\bar{M}| Q_{1}|M\rangle_{\text {spin-1 }}=-6|\psi(0)|^{2}
$$

Calculation of Matrix Elements

Matrix elements from operators -
Spin-0, para-muonium

$$
\begin{aligned}
\langle\bar{M}| Q_{1}|M\rangle & =2|\psi(0)|^{2}, \quad\langle\bar{M}| Q_{2}|M\rangle=2|\psi(0)|^{2} \\
\langle\bar{M}| Q_{3}|M\rangle & =-3|\psi(0)|^{2}, \quad\langle\bar{M}| Q_{4}|M\rangle=-\frac{1}{2}|\psi(0)|^{2} \\
\langle\bar{M}| Q_{5}|M\rangle & =-\frac{1}{2}|\psi(0)|^{2}
\end{aligned}
$$

Spin-1, ortho-muonium

$$
\begin{aligned}
& \langle\bar{M}| Q_{1}|M\rangle=-6|\psi(0)|^{2}, \quad\langle\bar{M}| Q_{2}|M\rangle=-6|\psi(0)|^{2} \\
& \langle\bar{M}| Q_{3}|M\rangle=-3|\psi(0)|^{2}, \quad\langle\bar{M}| Q_{4}|M\rangle=-\frac{3}{2}|\psi(0)|^{2} \\
& \langle\bar{M}| Q_{5}|M\rangle=-\frac{3}{2}|\psi(0)|^{2}
\end{aligned}
$$

Calculation of Δm - Results

- Relation of Δm to m_{12}

Using,

$$
|\Delta m|=2\left|\operatorname{Re} m_{12}\right|
$$

- Δm in terms of Wilson coefficients

$$
\begin{aligned}
& \Delta m_{\text {spin }-0}=\left(\frac{\left(m_{\text {red }} \alpha\right)^{3}}{\pi \Lambda_{1}^{2}}\right)\left(2 C_{1}+2 C_{2}-3 C_{3}-\frac{1}{2} C_{4}-\frac{1}{2} C_{5}\right) \\
& \Delta m_{\text {spin }-1}=\left(\frac{\left(m_{\text {red }} \alpha\right)^{3}}{\pi \Lambda_{1}^{2}}\right)\left(-6 C_{1}-6 C_{2}-3 C_{3}-\frac{3}{2} C_{4}-\frac{3}{2} C_{5}\right)
\end{aligned}
$$

Calculation of $\Delta \Gamma$

- Calculated Δm from operators that change the lepton quantum flavor number by two units, $\Delta L_{\mu}=2$
- Particles can also oscillate by two insertions of operators that change lepton flavor number by one unit, $\Delta L_{\mu}=1$
- Mass eigenstates has mass difference (Δm), but they also have width difference $(\Delta \Gamma)$
- Here the $\Delta L_{\mu}=1$ insertions are the only contribution to $\Delta \Gamma$

Calculation of $\Delta \Gamma$

- $\Delta \Gamma^{f f}$ is generated by on-shell degrees of freedom, $f=e, \nu$
- Two insertions of $\Delta L_{\mu}=1$ operators
- Most general dimension-six Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{\Delta L_{\mu}=1}=-\frac{1}{\Lambda^{2}} & \sum_{f}\left[\left(C_{V R}^{f} \bar{\mu} \gamma^{\alpha} P_{R} e+C_{V L}^{f} \bar{\mu} \gamma^{\alpha} P_{L} e\right) \bar{f} \gamma_{\alpha} f\right. \\
& +\left(C_{A R}^{f} \bar{\mu} \gamma^{\alpha} P_{R} e+C_{A L}^{q} \bar{\mu} \gamma^{\alpha} P_{L} e\right) \bar{f} \gamma_{\alpha} \gamma_{5} f \\
& +m_{e} m_{f} G_{F}\left(C_{S R}^{f} \bar{\mu} P_{L} e+C_{S L}^{f} \bar{\mu} P_{R} e\right) \bar{f} f \\
& +m_{e} m_{f} G_{F}\left(C_{P R}^{f} \bar{\mu} P_{L} e+C_{P L}^{f} \bar{\mu} P_{R} e\right) \bar{f} \gamma_{5} f \\
+ & \left.m_{e} m_{f} G_{F}\left(C_{T R}^{f} \bar{\mu} \sigma^{\alpha \beta} P_{L} e+C_{T L}^{f} \bar{\mu} \sigma^{\alpha \beta} P_{R} e\right) \bar{f} \sigma_{\alpha \beta} f+h . c .\right]
\end{aligned}
$$

$$
\operatorname{cothtat}
$$

Calculation of $\Delta \Gamma$ - Matrix Elements

- Neglecting terms proportional to $m_{e^{\prime}}$, we find the surviving matrix elements

$$
\begin{aligned}
& \Gamma_{12}^{V L e e}=\left(\frac{C_{V L}}{\Lambda^{2}}\right)^{2}\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{1}\right\rangle+\left\langle Q_{5}\right\rangle\right), \\
& \Gamma_{12}^{A L e e}=\left(\frac{C_{A L}}{\Lambda^{2}}\right)^{2}\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{1}\right\rangle+\left\langle Q_{5}\right\rangle\right),
\end{aligned}
$$

$$
\text { Proportional to } \frac{1}{\Lambda^{4}}
$$

$$
\Gamma_{12}^{\text {VRee }}=\left(\frac{C_{V R}}{\Lambda^{2}}\right)^{2}\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{2}\right\rangle+\left\langle Q_{4}\right\rangle\right),
$$

$$
\Gamma_{12}^{A R e e}=\left(\frac{C_{A R}}{\Lambda^{2}}\right)^{2}\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{2}\right\rangle+\left\langle Q_{4}\right\rangle\right)
$$

$$
\Gamma_{12}^{(V L, V R), e e}=\left(\frac{C_{V L} C_{V R}}{\Lambda^{4}}\right)\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{3}\right\rangle+\left\langle Q_{6}\right\rangle\right),
$$

$$
\Gamma_{12}^{(A L, A R) \text { eee }}=\left(\frac{C_{A L} C_{A R}}{\Lambda^{4}}\right)\left(\frac{M_{M}^{2}}{12 \pi}\right)\left(\left\langle Q_{3}\right\rangle+\left\langle Q_{6}\right\rangle\right)
$$

Calculation of $\Delta \Gamma$ - Results

- $\left\langle Q_{i}\right\rangle$ is defined by $\left\langle Q_{i}\right\rangle=\langle\bar{M}| Q_{i}|M\rangle$
- After neglecting terms proportional to m_{e} and using

$$
|\Delta \Gamma|=2\left|\operatorname{Re} \Gamma_{12}\right|
$$

- We get $\Delta \Gamma^{e e}$ for spin-0:

$$
\Delta \Gamma_{\text {spin }-0}^{e e}=\frac{\left(m_{\text {red }} \alpha\right)^{3}}{4 \pi^{2}} \frac{M_{M}^{2}}{\Lambda^{4}}\left[C_{V L}^{2}+C_{V R}^{2}+C_{A L}^{2}+C_{A R}^{2}-C_{V L} C_{V R}-C_{A L} C_{A R}\right]
$$

- And $\Delta \Gamma^{e e}$ for spin-1:

$$
\Delta \Gamma_{\text {spin }-1}^{e e}=-\frac{\left(m_{\text {red }} \alpha\right)^{3}}{3 \pi^{2}} \frac{M_{M}^{2}}{\Lambda^{4}}\left[5 C_{V L}^{2}+5 C_{V R}^{2}+5 C_{A L}^{2}+5 C_{A R}^{2}+C_{V L} C_{V R}+C_{A L} C_{A R}\right]
$$

- How large is $\Delta \Gamma^{e e}$: data?

Calculation of $\Delta \Gamma$ - Constraints

- Current upper bound on $\mu \rightarrow e e e$
[SINDRUM experiment (1988)]

$$
B R(\mu \rightarrow e e e) \leq 1.0 \times 10^{-12} @ 90 \% \text { C.L. }
$$

- Decay widths of $\mu \rightarrow e e e$

$$
\Gamma_{i j}=\frac{m_{\mu}^{5}}{768 \pi^{3}}\left(\frac{C_{i j}}{\Lambda^{2}}\right)^{2} \quad i=V, A \text { and } j=L, R
$$

- Bounds on the Wilson coefficients

$$
C_{V L}, C_{V R}, C_{A L}, C_{A R} / \Lambda^{2} \leq 2.3 \times 10^{-11} \mathrm{GeV}^{-2}
$$

Calculation of $\Delta \Gamma$ - Results

- From bounds on the Wilson coefficients we can put a constraint on $\Delta \Gamma^{e e}$

$$
\Delta \Gamma_{\text {spin }-0}^{e e} \leq 1.5 \times 10^{-41} \mathrm{GeV} \quad \Delta \Gamma_{\text {spin }-1}^{e e} \leq 1.7 \times 10^{-40} \mathrm{GeV}
$$

- Like B^{0} and D^{0} mixing we can constraint a parameter $y_{M_{e}}$ for para and ortho-muonium

$$
y_{M_{e}, s p i n-0,1} \equiv \frac{\Delta \Gamma_{\text {spin-0,1}}^{e e}}{2 \Gamma_{\text {avg }}}
$$

$$
y_{M_{e}, \text { spin }-0} \leq 2.5 \times 10^{-23}
$$

$$
y_{M_{e}, \text { spin }-1} \leq 2.8 \times 10^{-22}
$$

Summary

- Calculated Δm with the most general basis of dimensionsix operators
- Calculated $\Delta \Gamma^{e e}$ for spin-0 and spin-1 for the first time
- Using the current experimental upper bound on $\mu \rightarrow e e e$ we found constraints on $\Delta \Gamma^{e e}$ and the experimental observable $y_{M_{e}}$

Questions?

Renae Conlin
au9969@wayne.edu

Searches for Muonium Oscillations

- Most recent search for muonium oscillations was at the Paul Scherrer Institute (PSI)
- Probability of $P_{M \bar{M}} \leq 8.2 \times 10^{-11} @ 90 \%$ C.L.
- $P(M \rightarrow \bar{M})=\int_{0}^{\infty} \frac{d t}{\tau} e^{-t / \tau}|\langle\bar{M} \mid M(t)\rangle|^{2}$
- Beam of μ^{+}at SIO_{2} powder target, electron capture to form muonium
- If $M\left(\mu^{+} e^{-}\right) \rightarrow \bar{M}\left(\mu^{-} e^{+}\right)$then an energetic e^{-}and an e^{+}would be detected, with the
e^{-}from the $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$ decay
- Background
- Bhabha scattering of the e^{-}and a e^{+}from the μ^{+}decay
- $\mu^{+} \rightarrow e^{-} e^{+} e^{+} \nu_{e} \bar{\nu}_{\mu}$

Muonium Oscillation Formalism

- In the Schrödinger picture start with a flavor eigenstate

$$
|\psi\rangle=|\psi, t=0\rangle \quad|\psi, t\rangle=U(t, 0)|\psi\rangle=e^{-i H t}|\psi\rangle
$$

- We get the Schrödinger equation

$$
i \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

- Generalizing to a two state system describing muonium oscillations

$$
i \frac{d}{d t}\binom{|M(t)\rangle}{|\bar{M}(t)\rangle}=\left(m-i \frac{\Gamma}{2}\right)\binom{|M(t)\rangle}{|\bar{M}(t)\rangle}
$$

- With matrix Hamiltonian

$$
H=\left(m-i \frac{\Gamma}{2}\right)
$$

Calculation of $\Delta \Gamma$ - Constraints

- Want constraints on Wilson coefficients - C_{i}^{\prime} s
- For some operators you can relate the decay $\mu \rightarrow e e e$ to $\Delta \Gamma$ for a single operator insertion
- Use $\mu \rightarrow$ eee experimental data to contain coefficients
- Current upper bound measured by Sindrum

$$
B R(\mu \rightarrow e e e) \leq 1.0 \times 10^{-12} @ 90 \% \text { C.L. }
$$

- Using the muons average decay width and the branching ratio from $\mu \rightarrow e e e$, we can find the upper bound on the decay width for $\mu \rightarrow$ eee

$$
\Gamma(\mu \rightarrow e e e) \leq 3.0 \times 10^{-31} \mathrm{GeV}
$$

