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Motivation

•Neutrino’s mix and change flavor - must have non-zero mass 

•This can lead to flavor violating processes in the charged lepton 
sector 

•Lepton flavor violating (LFV) processes are highly suppressed in 
the standard model, e.g.    

•LFV processes are highly suppressed in the standard model  
 no background for NP! 

•LFV processes are searched for in various processes: 

• : ,  and    

• : Muonium anti-muonium oscillations 

• In some models we can expect  contributions to be 
the dominant ones, e.g. doubly charged Higgs has a tree 
level contribution to , but not to 

μ → eγ Br(μ → eγ)SM ∼ 10−54

⇒

ΔLμ = 1 μ → eγ μ → eee μ + N → e + N

ΔLμ = 2

ΔLμ = 2

ΔLμ = 2 μ → eγ
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https://j-parc.jp/Neutrino/en/intro-t2kexp.html

Abdallah, W. 2108 arXiv:1105.1047 [hep-ph]

http://inspirehep.net/author/profile/Abdallah%2C%20W.?recid=898638&ln=en
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Muonium Oscillations: M → M

•Muonium is a non-relativistic Coulombic bound 
state of an anti-muon and an electron  

•Can be Spin-  (singlet): para-muonium   

•Spin-  (triplet): ortho-muonium 

•An oscillation is the process  
 

•It violates muon lepton number by two units 
, i.e.: it can probe different types of 

NP than  or  

•Conversion rate was calculated in several NP 
models with heavy DOF

μ+ e

0

1

M(μ+e−) → M(μ−e+)

ΔLμ = 2
μ → eγ μ + N → e + N

4

Muonium ( )μ+e−
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Muonium Oscillation Formalism

•An effective theory approach: all possible heavy NP 
models 

•Most general Lagrangian 

• ’s are the Wilson coefficients 

•Determined by the (UV) physics at some NP scale  

• ’s are the dimension-six operators 

•Reflect degrees of freedom relevant at the scale in which a 
process takes place

ci

Λ

Qi
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ℒeff = −
1

Λ2 ∑
i

ci(μ)Qi
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Muonium Oscillation Formalism

• Similar to meson-antimeson oscillations, but unlike  or  oscillations both 
spin-0 and spin-1 states can oscillate   

• The time development of   and  are coupled and is given by a Schrödinger 
equation 

• Assume CPT invariance, then the diagonal and off diagonal elements are 

KK BB

M M

6

i
d
dt ( |M(t)⟩

|M(t)⟩) = (m − i
Γ
2 )( |M(t)⟩

|M(t)⟩)

matrix Hamiltonian

m11 = m22, Γ11 = Γ22 m12 = m*21, Γ12 = Γ*21

 and  are  Hermitian matrices:  
the mass matrix and the decay matrix
m Γ 2 × 2
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Muonium Oscillation Formalism

•The off diagonal element of this matrix is given by 

•Since  then  and  are not mass eigenstates: 

diagonalize! 

•The CP conserving mass eigenstates,  and , are linear 
combinations of  and 

(m − i
Γ
2 )

12
≠ 0 M M

M1 M2
M M

7

(m −
i
2

Γ)
12

=
1

2MM
⟨M ℋΔLμ=2 M⟩ +

1
2MM ∑

n

⟨M ℋΔLμ=1 n⟩ ⟨n ℋΔLμ=1 M⟩
MM − En + iϵ

M1,2⟩ =
1

2
( |M⟩ ± |M⟩)
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Muonium Oscillation Time Evolution

• Time development of  and  

• Mass eigenstates  and  has mass difference ( ), and width 
difference ( ) 

• Dependence on  and ! 

• Need to calculate  and !

M M

M1 M2 Δm
ΔΓ

x y

x y
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M(t)⟩ = g+(t) M⟩ + g−(t) M⟩ M(t)⟩ = g−(t) M⟩ + g+(t) M⟩
g±(t) =

1
2

e−Γ1t/2e−im1t [1 ± e−ΔΓt/2eiΔmt]

Δm ≡ m1 − m2, ΔΓ ≡ Γ2 − Γ1 x =
Δm
Γ

y =
ΔΓ
2Γ but x, y ≪ 1

Γ(M → f )
Γ(M → f )

∼ R(x, y), R(x, y) =
1
4

(x2 + y2)
Γ(M → f )(t) = Nf ⟨f S M(t)⟩

2

,

Γ(M → f )(t) = Nf ⟨f S M(t)⟩
2

Where,
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Calculation of Matrix Elements

•Our  Lagrangian  

•Most general set of operators, ’s 

•Other possible structures can be Fierz’d into the operators above 

ΔLμ = 2

Qi
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Q1 = (μγαPLe) (μγαPLe), Q2 = (μγαPRe) (μγαPRe), Q3 = (μγαPLe) (μγαPRe),

Q4 = (μPRe) (μPRe), Q5 = (μPLe) (μPLe)

ℒΔLμ=2
eff = −

1
Λ2

1
∑

i

Ci(μ)Qi(μ)
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Calculation of Matrix Elements

•Matrix element  

•Muonium is a non-relativistic Coulombic bound state 

•Perturbative QED bound state: can calculate!

m12

10

m12 = ⟨M −ℒΔLμ=2
eff M⟩ = ∑

i

Ci

Λ2
1

⟨M Qi M⟩

|M(0)⟩ = 2Eq2E−q ∫
d3q

(2π)3
ψ̃(q)a(e)†

q b(μ)†
−q |0⟩

 is the Fourier transform of the spatial wave function ψ̃(q) ψ(x)
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Calculation of Matrix Elements

Example:          Q1 = (μγαPLe) (μγαPLe)

11

⟨M̄ Q1 M⟩ = 4(uγαPLv)(vγαPLu) ∫
d3q

(2π)3
ψ̃(q)

2
Where, ∫

d3q
(2π)3

ψ̃ (q)
2

=
1

4mμme
ψ (0)

2

⟨M̄ Q1 M⟩spin−0
= 2 |ψ(0) |2 ⟨M̄ Q1 M⟩spin−1

= − 6 |ψ(0) |2

u = me (ξ
ξ), v = me ( η

−η),

u = mμ (ξ†, ξ†) γo, v = mμ (η†, − η†) γo ξη† =
1

2
12×2 ηξ† =

1

2
ϵ * ⋅ σ

spatial wavefuntion at the origin

spinor products: spin-0, spin-1 
Spin-1 with 3 possible polarizations

non-relativistic spinors
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Calculation of Matrix Elements

Matrix elements from operators - 

12

Spin-0, para-muonium

Spin-1, ortho-muonium

⟨M̄ Q1 M⟩ = 2 |ψ(0) |2 , ⟨M̄ Q2 M⟩ = 2 |ψ(0) |2

⟨M̄ Q3 M⟩ = − 3 |ψ(0) |2 , ⟨M̄ Q4 M⟩ = −
1
2

|ψ(0) |2

⟨M̄ Q5 M⟩ = −
1
2

|ψ(0) |2

⟨M̄ Q1 M⟩ = − 6 |ψ(0) |2 , ⟨M̄ Q2 M⟩ = − 6 |ψ(0) |2

⟨M̄ Q3 M⟩ = − 3 |ψ(0) |2 , ⟨M̄ Q4 M⟩ = −
3
2

|ψ(0) |2

⟨M̄ Q5 M⟩ = −
3
2

|ψ(0) |2
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Calculation of  - ResultsΔm

•Relation of  to  

•  in terms of Wilson coefficients 

Δm m12

Δm
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|Δm | = 2 Re m12

Δmspin−0 = (mredα)3

πΛ2
1 (2C1 + 2C2 − 3C3 −

1
2

C4 −
1
2

C5)

ψ100 =
1

πa3
MM̄

e−r/aMM̄

Δmspin−1 = (mredα)3

πΛ2
1 (−6C1 − 6C2 − 3C3 −

3
2

C4 −
3
2

C5)

Using,

muonium Bohr radius
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Calculation of ΔΓ

•Calculated  from operators that change the lepton quantum 
flavor number by two units,  

•Particles can also oscillate by two insertions of operators that 
change lepton flavor number by one unit,  

•Mass eigenstates has mass difference ( ), but they also have 
width difference ( ) 

•Here the  insertions are the only contribution to  

•  calculated for the first time!

Δm
ΔLμ = 2

ΔLμ = 1

Δm
ΔΓ

ΔLμ = 1 ΔΓ

ΔΓ

14

 calculated for 

[Fienberg and Wienberg, (1961)]

Δm Q2
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Calculation of ΔΓ

•  is generated by on-shell degrees of freedom,  

• Two insertions of  operators 

• Most general dimension-six Lagrangian 

ΔΓff f = e, ν

ΔLμ = 1

15
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Calculation of  - Matrix ElementsΔΓ

•Neglecting terms proportional to , we find the surviving 
matrix elements 

me

16

ΓVLee
12 = ( CVL

Λ2 )
2

( M2
M

12π ) (⟨Q1⟩ + ⟨Q5⟩),

ΓVRee
12 = ( CVR

Λ2 )
2

( M2
M

12π ) (⟨Q2⟩ + ⟨Q4⟩),

ΓALee
12 = ( CAL

Λ2 )
2

( M2
M

12π ) (⟨Q1⟩ + ⟨Q5⟩),

ΓARee
12 = ( CAR

Λ2 )
2

( M2
M

12π ) (⟨Q2⟩ + ⟨Q4⟩),

Γ(VL,VR)ee
12 = ( CVLCVR

Λ4 ) ( M2
M

12π ) (⟨Q3⟩ + ⟨Q6⟩),

Γ(AL,AR)ee
12 = ( CALCAR

Λ4 ) ( M2
M

12π ) (⟨Q3⟩ + ⟨Q6⟩)

Proportional to 
1

Λ4
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Calculation of   - ResultsΔΓ

•We get  for spin- : 

•And  for spin- : 

•How large is : data?

ΔΓee 0

ΔΓee 1

ΔΓee

17

|ΔΓ | = 2 Re Γ12

ΔΓee
spin−0 = (mredα)3

4π2

M2
M

Λ4 [C2
VL + C2

VR + C2
AL + C2

AR − CVLCVR − CALCAR]

ΔΓee
spin−1 = − (mredα)3

3π2

M2
M

Λ4 [5C2
VL + 5C2

VR + 5C2
AL + 5C2

AR + CVLCVR + CALCAR]

⟨Qi⟩ = ⟨M Qi M⟩
•  is defined by⟨Qi⟩ •After neglecting terms proportional to  and usingme
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Calculation of  - ConstraintsΔΓ

• Current upper bound on               [SINDRUM experiment (1988)] 

• Decay widths of  

• Bounds on the Wilson coefficients

μ → eee

μ → eee

18

Γij =
m5

μ

768π3 (
Cij

Λ2 )
2

CVL, CVR, CAL, CAR /Λ2 ≤ 2.3 × 10−11GeV−2

BR(μ → eee) ≤ 1.0 × 10−12@90 %  C.L. 

 and i = V, A j = L, R
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Calculation of  - ResultsΔΓ

•From bounds on the Wilson coefficients we can put a 
constraint on  

•Like  and  mixing we can constraint a parameter  
for para and ortho-muonium

ΔΓee

B0 D0 yMe

19

ΔΓee
spin−0 ≤ 1.5 × 10−41GeV ΔΓee

spin−1 ≤ 1.7 × 10−40GeV

yMe,spin−0,1 ≡
ΔΓee

spin−0,1

2Γavg

yMe,spin−0 ≤ 2.5 × 10−23 yMe,spin−1 ≤ 2.8 × 10−22

Compare :  DD yD = (9.7 ± 4.4 ± 3.1) × 10−3

[BABAR collaboration, 2007] 
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Summary

•Calculated  with the most general basis of dimension-
six operators 

•Calculated  for spin-  and spin-  for the first time 

•Using the current experimental upper bound on  
we found constraints on  and the experimental 
observable  

Δm

ΔΓee 0 1

μ → eee
ΔΓee

yMe

20
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Questions?

21

Renae Conlin 
au9969@wayne.edu

mailto:au9969@wayne.edu
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Searches for Muonium Oscillations

•Most recent search for muonium oscillations was at the Paul Scherrer Institute (PSI) 

•Probability of  

•  

•Beam of  at  powder target, electron capture to form muonium 

•If  then an energetic  and an  would be detected, with the 
 from the  decay 

•Background  

•Bhabha scattering of the  and a  from the  decay 

•

PMM ≤ 8.2 × 10−11@90 % C.L.

P(M → M̄ ) = ∫
∞

0

dt
τ

e−t/τ |⟨M̄ |M(t)⟩ |2

μ+ SIO2

M(μ+e−) → M(μ−e+) e− e+

e− μ− → e−νeνμ

e− e+ μ+

μ+ → e−e+e+νeνμ

22
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Muonium Oscillation Formalism

•In the Schrödinger picture start with a flavor eigenstate 

•We get the Schrödinger equation 

     

•Generalizing to a two state system describing muonium oscillations 

•With matrix Hamiltonian

23

|ψ⟩ = |ψ, t = 0⟩ |ψ, t⟩ = U(t,0) |ψ⟩ = e−iHt |ψ⟩

i
d
dt ( |M(t)⟩

|M(t)⟩) = (m − i
Γ
2 ) ( |M(t)⟩

|M(t)⟩)

i
d
dt

|ψ(t)⟩ = H |ψ(t)⟩

H = (m − i
Γ
2 )
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Calculation of  - ConstraintsΔΓ

•Want constraints on Wilson coefficients - ’s 

•For some operators you can relate the decay  to  for a single operator 
insertion 

•Use  experimental data to contain coefficients   

•Current upper bound measured by Sindrum 

•Using the muons average decay width and the branching ratio from , we can 
find the upper bound on the decay width for  

•

Ci

μ → eee ΔΓ

μ → eee

μ → eee
μ → eee

24

BR(μ → eee) ≤ 1.0 × 10−12@90 %  C.L. 

Γ(μ → eee) ≤ 3.0 × 10−31GeV


