Searching for Dark Photon Dark Matter with LIGO

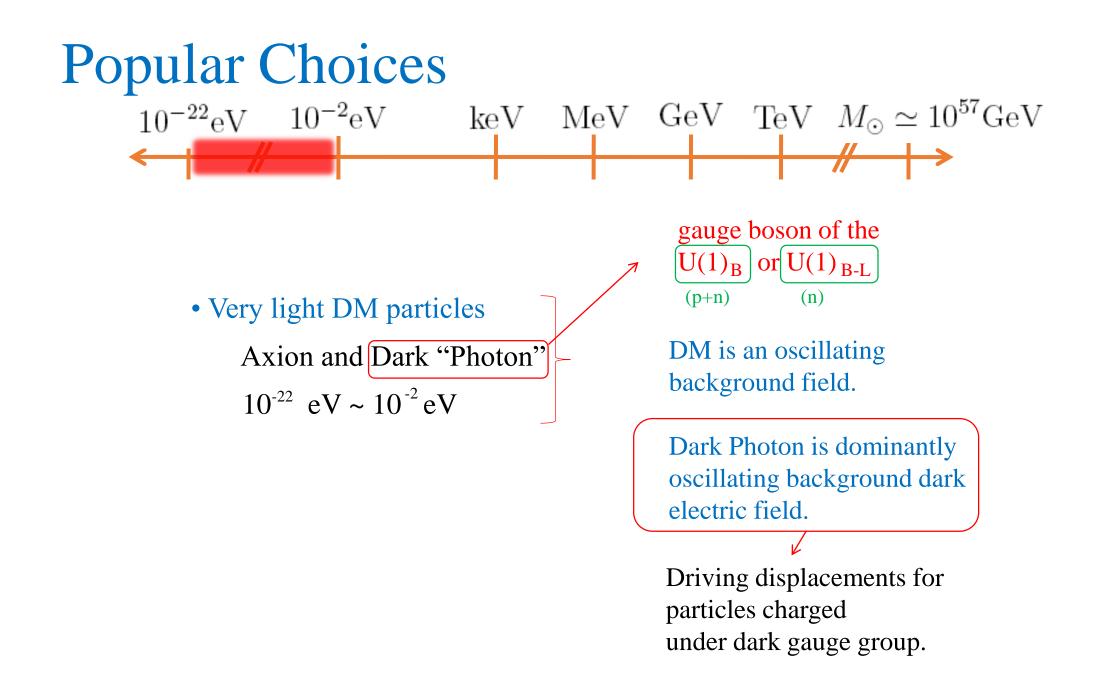
Fengwei Yang Department of Physics, the University of Hong Kong & Department of Physics and Astronomy, University of Utah May 4th, 2020

> Huai-Ke Guo, Keith Riles, F. W. Y., Yue Zhao arXiv:1905.04316 [hep-ph] *Nature - Commun Phys* 2, 155 (2019)

> > O1 data analysis is done! Email: fwyang@hku.hk

Content

- Theory section
 - What is DPDM?
 - How to search DPDM with LIGO?
- Simulation section
 - The DPDM background simulation
 - Coherence time & Coherence length
- Analysis section
 - Properties of DPDM signals
 - O1 Result



Dark field estimation

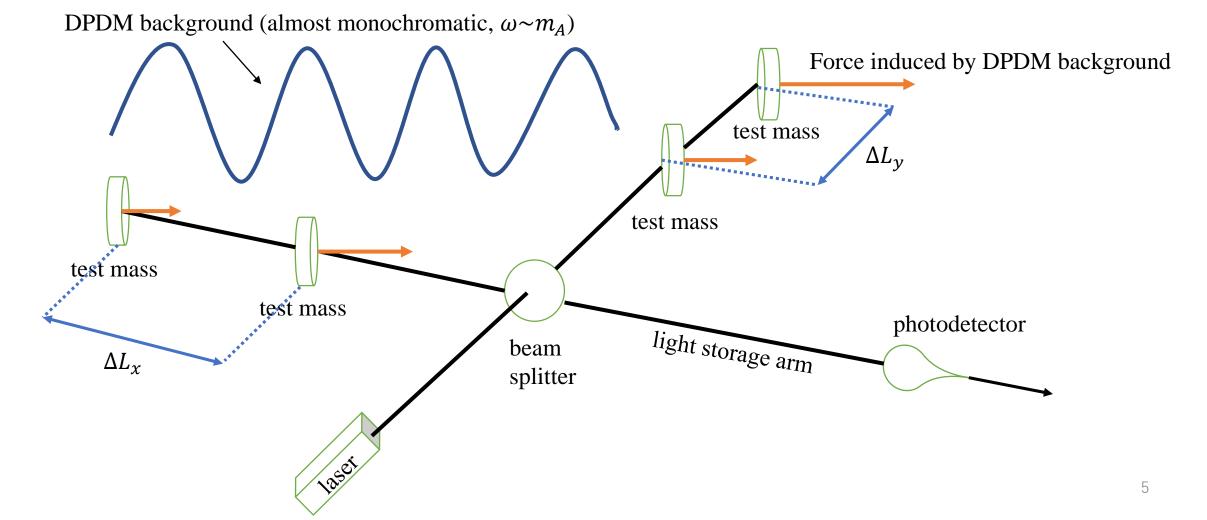
Local DM energy density:

$$\boxed{\frac{1}{2}m_A^2 A_{\mu,0}A_0^\mu \simeq 0.4 \text{ GeV/cm}^3}$$

In non-relativistic limit, the effect from electric component of Dark Photon background field is dominant.

How to search DPDM with LIGO?

• The most precise measurement of relative displacement $\Delta L \equiv |\Delta L_x - \Delta L_y|$ in O(1)km length scale.



The DPDM background simulation

- DPDM obeys Maxwell velocity distribution $f(v) \sim v^2 e^{-v^2/v_0^2}$, where $v_0 \sim 10^{-3}c$.
- The wavefunction of the i^{th} dark photon particle,

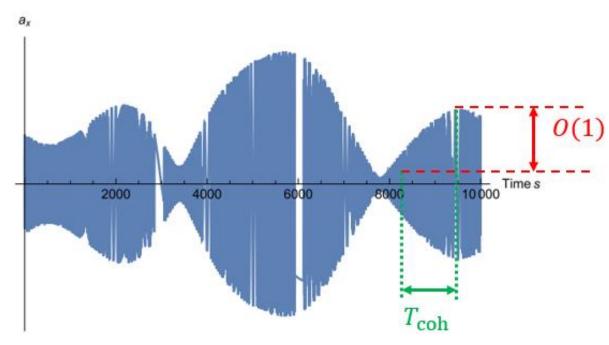
polarization vector propagation vector

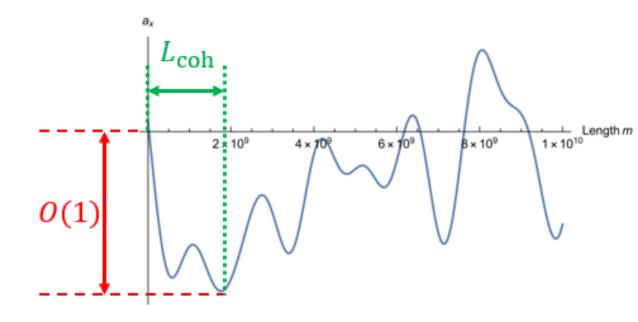
$$\mathbf{A}_{i}(t, \mathbf{x}) \equiv \mathbf{A}_{i,0} \sin(\omega_{i}t - \mathbf{k}_{i} \cdot \mathbf{x} + \phi_{i}),$$
total energy random phase

- 100Hz $\longrightarrow m_A \sim 4 \times 10^{-13} \text{eV} \longrightarrow$ Dark photon wavefunctions overlap.
- Obtain the DPDM background field:

$$\mathbf{A}_{total}(t, \mathbf{x}) = \sum_{i=1}^{N} \mathbf{A}_{i,0} \sin(\omega_i t - \mathbf{k}_i \cdot \mathbf{x} + \phi_i).$$

The DPDM background simulation





Coherence time T_{coh} :

The time when the background profile has one order of magnitude change.

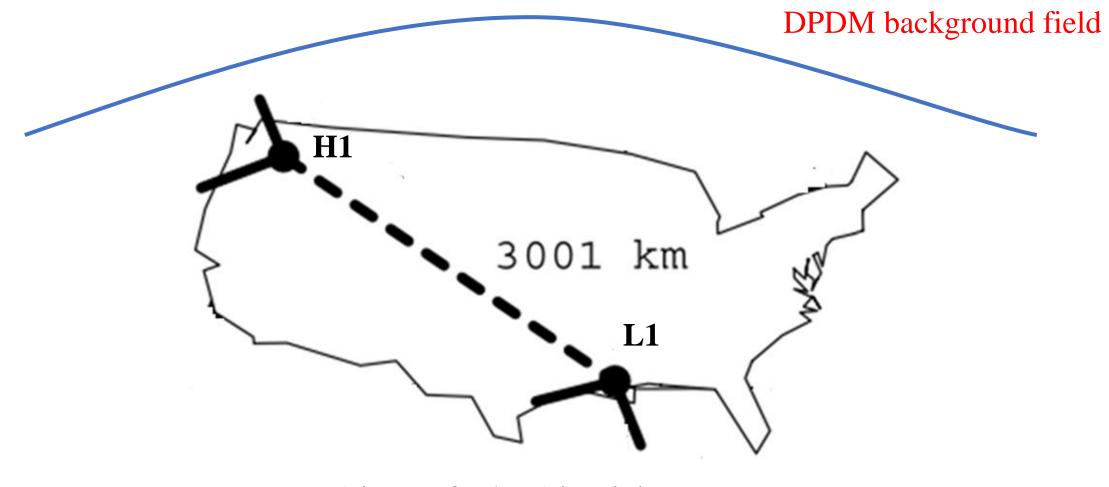
$$T_{\rm coh} \cong \frac{2\pi}{E_{\rm k}} = \frac{4\pi}{m_{\rm A} v_0^2}$$

Coherence length L_{coh} :

The length where the profile has one order of magnitude change.

$$L_{\rm coh} \cong \frac{2\pi}{k} = \frac{2\pi}{m_{\rm A}v_0} \sim 3 \times 10^9 \,\mathrm{m}\left(\frac{100 \,\mathrm{Hz}}{f}\right)$$

Correlated DPDM signals



H1 in Hanford, L1 in Livingston.

Properties of DPDM signals

- Signal is almost monochromatic $f \cong \frac{m_A}{2\pi}$.
- Signal is correlated between two LIGO detectors due to the board coherence region of DPDM background.
- SNR value is negative since there is 90° rotation between two LIGO detectors. The sign of the signal flips.

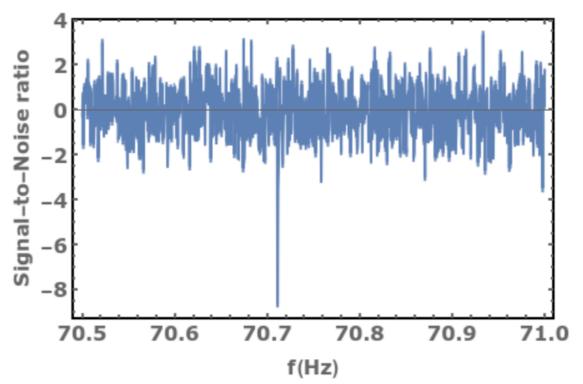
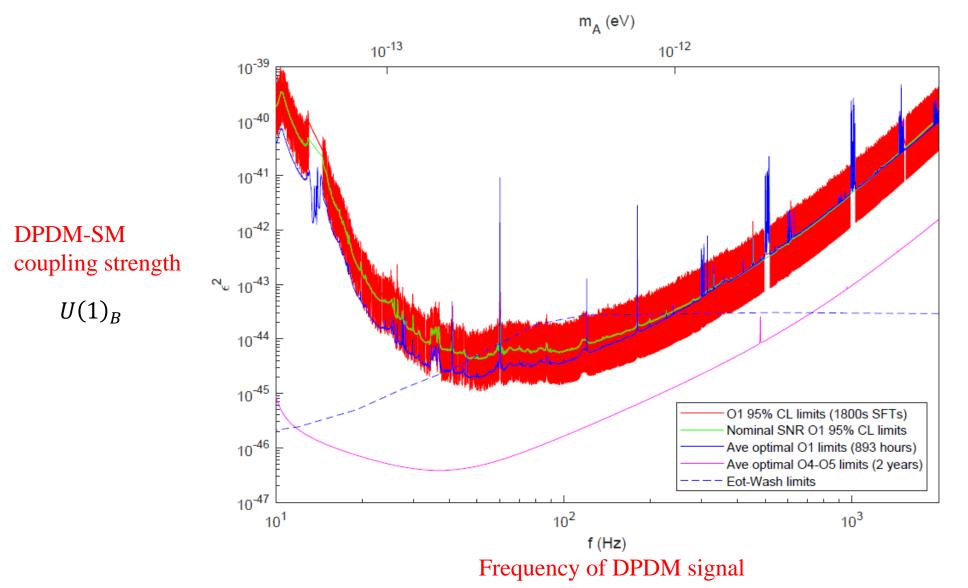


FIG. 5: The SNR v.s. frequency plot, where $f = 100/\sqrt{2}$ Hz, $\epsilon^2 = 5 \times 10^{-44}$, $N_{\rm SFT} = 400$, $T_{\rm SFT} = 1800$ s, Gaussion noise of detector set in LALSuite is 10^{-23} .

O1 Result – sensitivity curve of DPDM signal in LIGO:

Dark Photon Mass



Conclusion

The applications of GW experiments can be extended!

 \implies Particularly sensitive to relative displacements.

Coherently oscillating DPDM generates such displacements. It can be used as a DM direct detection experiment.

The analysis is straightforward!

 \Box Cross correlation

The sensitivity can be extraordinary!

 \implies O1 data has already beaten existing experimental constraints.

Can probe the unexplored parameter regimes.

Once measured, great amount of DM information can be extracted!

Backup 1: Dark field estimation

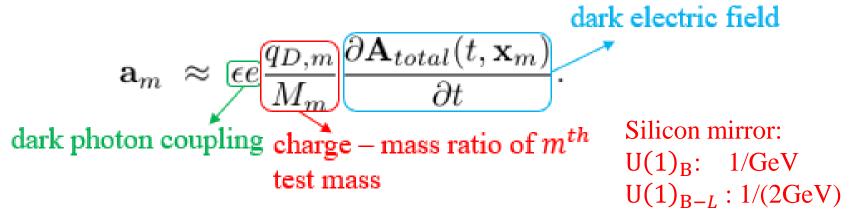
Local DM energy density:

$$\begin{split} \boxed{\frac{1}{2}m_A^2 A_{\mu,0}A_0^{\mu} \simeq 0.4 \text{ GeV/cm}^3} \\ \text{local field strength of DP} \\ F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \\ \partial^{\mu}A_{\mu} &= 0 \\ \mathcal{O}^{\mu}A_{\mu} &= 0 \\ \mathcal{O}^{\mu}A_{i} &>> B^i \sim m_A v_j A_k \epsilon^{ijk} \\ \text{the typical velocity of DPDM } v \sim 10^{-3}c \end{split}$$

(the virial velocity of DM halo in the Milky Way)

Backup 2: Signal modeling

• The acceleration of m^{th} test mass \mathbf{a}_m is



• The displacement of m^{th} test mass projected along the arm direction:

$$s_{||,m} = \int dt \int dt a_{||,m} \underbrace{(t)}_{\text{the arm direction}}$$

• One subtlety: If Earth rotation effect is included, the direction of polarization vector and propagation vector will rotate around the Earth rotation axis.

Backup 3: Detector response

• The relative arm length change is

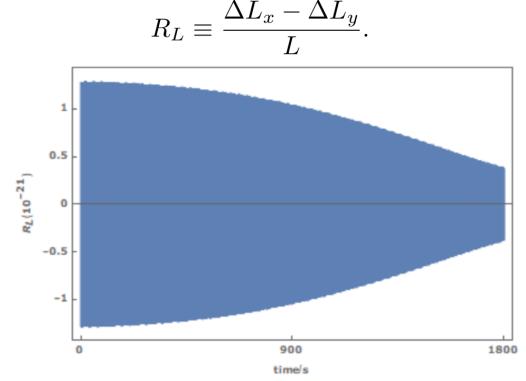


FIG. 3: Signal input to the LIGO similation package. We set $f = 100\sqrt{2}$ Hz, $\epsilon = 10^{-18}$. The DPDM profile is obtained by superposing 10^3 DPDM particles.

• Inject the signal into LALSuite (LIGO simulation package) to obtain the detector response.

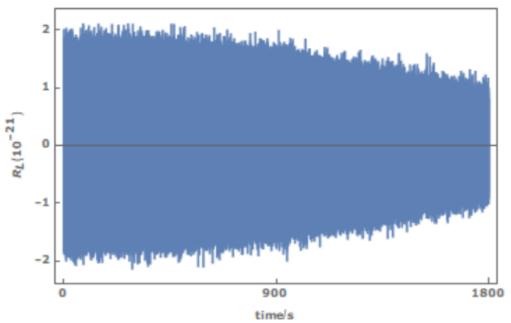


FIG. 4: The output of the LIGO simulation package, after noise is added. We set $f = 100\sqrt{2}$ Hz, $\epsilon = 10^{-18}$. The DPDM profile is obtained by superposing 10^3 DPDM particles.

Backup 4: DPDM detection statistic

- The DPDM signal is approximately a peak in frequency space.
- We use short-time Fourier transform (SFT). Given fixed observation time T_{obs} , $N_{SFT} = T_{obs}/T_{SFT}$.

• The measure of signal strength:

$$S_{j} = \frac{1}{N_{SFT}} \sum_{i=1}^{N_{SFT}} \frac{z_{1,ij} z_{2,ij}^{*}}{P_{1,ij} P_{2,ij}}$$
complex SFT coefficient for SFT *i* and frequency bin *j* and interferometer 1, 2
The signal is correlated!
the noise power

$$\sigma_{i}^{2} = \frac{1}{\sqrt{-\frac{1}{2}}} \sqrt{-\frac{1}{2}}$$

$$\sigma_j^2 = \frac{1}{N_{SFT}} \left\langle \frac{1}{2P_{1,j}P_{2,j}} \right\rangle_{N_{SFT}}$$

• The signal-to-noise ratio obtained from measurement:

$$SNR \equiv \frac{S_j}{\sigma_j}.$$