Constraints on the Inert(1+2)HDM

Marco Merchand

Based on JHEP 03 (2020) 108, in collaboration with Marc Sher

Phenomenology Symposium, May 4th 2020

Marco Merchand - mamerchandmedi@email.wm.edu

Motivation

Necessary ingredient in other models, eg. SUSY, composite Higgs, twin Higgs, etc.

□Richer symmetry

□CP violation, [Sakharov '69]

□1st order EW phase transition and Gravity Waves

Dark Matter (DM) candidate: inert doublet models (this talk!)

Testability of Inert Models

The Inert(1+2)HDM

↔ Three Higgs doublets Φ_1, Φ_2, η

$$Z_2: \quad \eta \to -\eta$$

Active doublets:
$$\Phi_1, \Phi_2$$

CP-even *h*, *H*
CP-odd *A*
charged H^{\pm}

- Simplifying assumptions
- No Flavor Changing Neutral Currents (FCNCs)
- No CP violation (all parameters are real)
- The scalar have relatively simple quartic couplings
- General Considerations
- ✤ h is the SM Higgs boson and χ is the DM particle: $m_{\chi} < m_{\chi_a}, m_{\chi^{\pm}}$

Potential

Potential between active and inert doublets $V_{123}(\Phi_1, \Phi_2, \eta) = \lambda_a \left[(\Phi_1^{\dagger} \Phi_1)(\eta^{\dagger} \eta) + (\Phi_2^{\dagger} \Phi_2)(\eta^{\dagger} \eta) \right] \\ + \lambda_b \left[(\Phi_1^{\dagger} \eta)(\eta^{\dagger} \Phi_1) + (\Phi_2^{\dagger} \eta)(\eta^{\dagger} \Phi_2) \right] \\ + \frac{1}{2} \lambda_c \left[(\Phi_1^{\dagger} \eta)^2 + (\Phi_2^{\dagger} \eta)^2 + \text{h.c.} \right]$

$$\lambda_{abc} \equiv \lambda_a + \lambda_b + \lambda_c$$

Freeze Out Production

$$\Omega_{\mathsf{DM}} h^2 \simeq 0.120$$
 $m_\chi \in [53,73] \; ext{GeV}$ $m_\chi \in [500,1000] \; ext{GeV}$

Projected Exclusions

♦ Projected bounds from LUX-ZEPLIN (LZ)
 ♦ Low mass $|\lambda_{abc}| \le 5 \times 10^{-4}$ ♦ High mass $|\lambda_{abc}| \le 0.02$ ♦ Best chance to discover DM!

Mono-object signals

 Production of several final states in association with large missing transverse momentum.

Mono-jet production

- We calculated cross sections for mono-jet, mono-Z, mono-h
- Mono-jet production yields the strongest effects

Marco Merchand - mamerchandmedi@email.wm.edu

Benchmark points

Mono-jet production

- A reassessment of the CPC I(1+2)HDM has been performed with the most current experimental data.
- >We have identified the regions of parameter space that give the right amount of relic abundance
- Presented the projected impact of DD experiments on the parameter space.
- Benchmark points for mono-object production have been provided and its signals investigated.
- >The model is hard to test at LHC with current data

Thank you for your attention!

BACK UP

Marco Merchand - mamerchandmedi@email.wm.edu

The Inert Doublet Model (IDM)

DM is stable \longrightarrow Exact Z_2 symmetry Odd: $\eta = \begin{pmatrix} \chi^{\pm} \\ (\chi + i\chi_a)/\sqrt{2} \end{pmatrix}$ SM Higgs: $\Phi = \begin{pmatrix} 0 \\ (v + h)/\sqrt{2} \end{pmatrix}$ DM candidates

IDM potential:

$$egin{aligned} V &= -m_{11}^2 \Phi^\dagger \Phi + m_{22}^2 \eta^\dagger \eta + rac{\lambda_1}{2} (\Phi^\dagger \Phi)^2 + rac{\lambda_2}{2} (\eta^\dagger \eta)^2 + \lambda_3 (\Phi^\dagger \Phi) (\eta^\dagger \eta) \ &+ \lambda_4 (\Phi^\dagger \eta) (\eta^\dagger \Phi) + rac{1}{2} \left[\lambda_5 (\Phi^\dagger \eta)^2 + ext{h.c.}
ight] \end{aligned}$$

Very well studied
Five free parameters
No CP violation allowed
No tree-level FCNCs

Eigenstates

Mixing Angles

- Lower bound on relic density only at $|\lambda_{abc}|$
- Alignment lim $\cos(\beta \alpha) \rightarrow 0$ h has SM

Theoretical and experimental constraints

- 1. Positivity of the potential
- 2. Unitarity
- 3. Electroweak Precision Observables (EWPO)
- 4. B meson decays
- 5. LEP bounds
- 6. Higgs boson signal strengths and invisible decays
- 7. Heavy scalar searches
- 8. DM overabundance
- 9. Spin independent cross sections of DM with nucleons

Model Parameters

• The model has 12 free parameters:

Active

$$S_1 = \{m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \alpha, \beta\}$$

 Inert
 $S_2 = \{m_{\chi}, m_{\chi_a}, m_{\chi^{\pm}}, m_{\eta}^2, \lambda_{\eta}\}$

• General Considerations

h is the SM Higgs boson $m_{\chi} < m_{\chi_a}, m_{\chi^{\pm}}$ and

Bounds on I2HDM

- Need a more dedicated analysis but one can compare with derived limits for similar models
- The mono-jet production can be tested at the high luminosity LHC in the low mass region.

