

SEARCHING FOR PAIR PRODUCTION OF TOP

SQUARKS AT CMS EXPERIMENT

Andrea Trapote (On behalf of the CMS Collaboration)

- Phenomenology 2020 Symposium -

4-6 May 2020

andrea.trapote.fernandez@cern.ch

INTRODUCTION

Supersymmetry is an extension of the SM that assigns a new particle (supertpartner) to every SM particle differing only in ½ of spin.

> This model can solve several shortcomings of the SM:

- Unification.
- If R-parity is conserved, the lightest supersymmetric particle (LSP) is stable and potentially massive, providing a good candidate for Dark Matter.
- The **hierarchy problem** since the quantum loop corrections to the Higgs mass, due mainly to the top quark, can be compensated by the effect of the top quark supertpartner.

TOP SQUARK PRODUCTION

The top quark plays an essential role in understanding the structure of the SM and SUSY.

Simplified Model Spectra "T2tt"

100% branching ratio assumed for the stop to top + neutralino decay.

- Several results with full Run 2 dataset have been published, and others are under way.
- **0 leptons**: <u>SUS-19-005</u>
- 1 lepton: <u>SUS-19-009</u>

Pheno2020

- **2 leptons** (eµ, "top corridor"): <u>SUS-18-003</u>*
- **2 leptons** (ττ): <u>SUS-19-003</u> (2016+2017 datasets)
- There are many more searches with partial datasets.
 *only 2016 dataset

Final states selected include 0, 1 and 2 leptons. But there are more decay modes possible also being investigated.

STOP **O** LEPTON SEARCH

Event selection and strategy

- All-hadronic search: veto on leptons and isolated tracks.
- Events classified by H_T , N_i , N_b and M_{T2} .
- Monojet regions binned in N_b and jet p_T .

Backgrounds estimated from data control regions

- Lost lepton: genuine p_T^{miss} from semi-leptonic W decay (W+jets, tt+jets).
- Irreducible background: Z+jets events where the Z boson decays to neutrinos.
- **QCD multijet**: fake p_T^{miss} from mis-measured jets.

M_{T2} bins for medium H_T

This is an inclusive analysis that has sensitivity also to other models.

Andrea Trapote – U. Oviedo

Interpret results in terms of exclusion limits on simplified models of SUSY.

M_{T2} bins for medium H_T

Andrea Trapote – U. Oviedo

Pheno2020

STOP 1 LEPTON SEARCH

Accepted by JHEP arXiv:1912.08887

Event selection and strategy

- Exactly one isolated electron or muon, $N_j \ge 2$, $N_b \ge 1$ and $p_T^{miss} > 250 GeV$.
- Events classified by N_j , p_T^{miss} , M_{lb} , t_{mod} and 3 top quark tagging categories (**untagged**, merged and resolved).
- **2** additional regions: $\Delta m(\tilde{t}, \tilde{\chi}_0^1) \sim m_W$ and $\Delta m(\tilde{t}, \tilde{\chi}_0^1) \sim m_t$.

Backgrounds estimated using control samples and simulation

- Lost lepton: one bad lepton from a W boson decaying leptonically ($t\bar{t}$, single top).
- $Z \rightarrow vv$: events where the Z boson decays to neutrinos.
- **One lepton**: single W boson decaying leptonically without any additional genuine p_T^{miss} .

STOP 1 LEPTON SEARCH

Interpret results in terms of exclusion limits on simplified models of SUSY.

STOP 2 LEPTONS SEARCH: eµ CHANNEL IN TOP CORRIDOR JHEP 03 (2019) 101

Event selection and strategy

- Only **2016 dataset** used, 36 fb⁻¹.
- OS eµ pair, $N_j \ge 2$ and $N_b \ge 1$.
- Search for degenerate stop pair production in **3 diagonals**:

 $\Delta m(\tilde{t}, \tilde{\chi}_0^1) = m_t, m_t \pm 7.5 \; GeV$

• Main discriminating variable: $M_{T2}(e\mu)$

Backgrounds

• The main background is $t\bar{t}$ due to the similar kinematics with the signal process in this region. It is estimated from MC with an **accurate knowledge** coming from different comparisons of the MC with measured inclusive and differential cross-section.

Andrea Trapote – U. Oviedo

STOP 2 LEPTONS SEARCH: eµ CHANNEL IN TOP CORRIDOR

No excess observed, then interpret results in terms of exclusion limits on simplified models of SUSY.

JHEP 03 (2019) 101

Stop 2 leptons search: $\tau\tau$ channel

JHEP 02 (2020) 015

Event selection and strategy

- Only **2016-2017 datasets** used, 77.2 fb⁻¹.
- OS hadronically decaying τ_h pair $N_j \ge 2$, $N_b \ge 1$, $p_T^{miss} > 50 GeV$ and $H_T > 100 GeV$.
- Events classified by p_T^{miss} , M_{T2} and H_T .

Backgrounds, evaluated in control regions

- **Prompt** $t\bar{t}$: $t\bar{t}$ events with two genuine τ_h decays.
- Fake taus: mostly from hadronic and semi-leptonic $t\bar{t}$ events with jets being misidentified as τ_h candidate.
- **DY + others SM:** minor backgrounds.

Stop 2 Leptons search: $\tau\tau$ channel

Interpret results in terms of exclusion limits on simplified models of SUSY.

Pheno2020

SUMMARY

- First analyses with full Run 2 in CMS achieve excellent exclusion limits, excluding stop quarks with masses up to 1.2 TeV.
- Several channels have been explored with partial luminosity and are being studied with the full Run 2.
- There are many more results on the way!

• Stay tuned!

CMS Public SUSY Results:

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/STOP.html

Pheno2020

Andrea Trapote – U. Oviedo

BACK UP

M_{T2} variable

• Stop 0 leptons:

$$M_{\rm T2} = \min_{\vec{p}_{\rm T}^{\rm miss\,X(1)} + \vec{p}_{\rm T}^{\rm miss\,X(2)} = \vec{p}_{\rm T}^{\rm miss}} \left[\max\left(M_{\rm T}^{(1)}, M_{\rm T}^{(2)}\right) \right]$$

 $\vec{p}_T^{missX(i)}$ (i = 1, 2) are trial vectors obtained by decomposing \vec{p}_T^{miss} , and $M_T^{(i)}$ are the transverse masses obtained by pairing either of the trial vectors with one of the two pseudojets.

• Stop 2 leptons:

$$M_{\rm T2} = \min_{\vec{p}_{\rm T,1}^{\rm miss} + \vec{p}_{\rm T,2}^{\rm miss} = \vec{p}_{\rm T}^{\rm miss}} \left(\max\left[m_{\rm T}(\vec{p}_{\rm T}^{\ell 1}, \vec{p}_{\rm T,1}^{\rm miss}), m_{\rm T}(\vec{p}_{\rm T}^{\ell 2}, \vec{p}_{\rm T,2}^{\rm miss}) \right] \right)$$

Stop 2 leptons search: $\tau\tau$ channel

- The Minimal Supersymmetric Standard Model (MSSM) is one of the most promising BSM candidates currently.
- MSSM : SM + S \tilde{M} + 2 Higgs doublets. MSSM has five Higgs bosons: h, H, A, H^{\pm} .
- The tree level CP-even h receives substantial correction involving top squark loops:

$$m_{h} = m_{Z} |\cos 2\beta| + \frac{3m_{t}^{4}}{2\pi^{2}v^{2}\sin^{2}\beta} \left[\log \frac{m_{s}^{2}}{m_{t}^{2}} + \frac{X_{t}^{2}}{2m_{s}^{2}}(1 - \frac{X_{t}^{2}}{6m_{s}^{2}})\right]$$
$$X_{t} = A_{t} - \mu \cot \beta$$
$$m_{s} = \sqrt{m_{t_{1}}m_{t_{2}}}$$

• h is the SM-like Higgs with $m_h = 125$ GeV.

Figure: Ref: A. Djouadi et al. 1112.3028

For more information go to the <u>approval talk</u> of the analysis.

- No mixing scenario (X_t = 0): stop mass needs to very high (~ 3 TeV) to get a 125 GeV Higgs.
- Maximal mixing scenario: Can get a lighter stop $(\sim 500 \text{ GeV})$ interesting in the LHC scenario.
- This motivates us to look for top squarks at the LHC to establish Supersymmetry.

Stop 2 leptons search: $\tau\tau$ channel

The chargino/neutralino has a gaugino and higgsino-like component:

$$\begin{split} \tilde{\chi}_i^{\pm} &= C_{1i} \tilde{W}^{\pm} + C_{2i} \tilde{H}^{\pm} \\ \tilde{\chi}_i^0 &= N_{1i} \tilde{\gamma} + N_{2i} \tilde{Z} + N_{3i} \tilde{H}_1^0 + N_{4i} \tilde{H}_2^0 \end{split}$$

- The chargino/neutralino couples to sleptons as $\sim m_l / \cos \beta$ with the higgsino component.
- A higgsino like scenario implies: $|C_{2i}|^2 >> |C_{1i}|^2$ and $|N_{3i}|^2 + |N_{4i}|^2 >> |N_{1i}|^2 + |N_{2i}|^2$.
- $\tan \beta >> 1$ implies $1/\cos \beta >> 1$.
- Hence in a higgsino-like scenario and/or high tan β region, chargino/neutralino will preferably decay to a τ final state because m_τ >> m_e, m_µ:

$$\begin{split} \tilde{\chi}_1^{\pm} &\to \tilde{\tau}_1 \ \nu_{\tau} + \tilde{\nu}_{\tau} \ \tau \to \tau \ \nu_{\tau} \ \chi_1^0 \\ \tilde{\chi}_2^0 &\to \tilde{\tau}_1 \ \tau \to \tau \ \tau \ \tilde{\chi}_1^0 \end{split}$$

- Such SUSY cascade decays lead to final states with lots of taus.
- The existing exclusions (hadronic/leptonic) are not applicable for a higgsino-like and/or high tan β scenario where the chargino/neutralino will preferably decay to a τ final state, and hence the need to search for tau lepton final states.

STOP 2 LEPTONS SEARCH

Event selection and strategy

- Only **2016 dataset** used, 36 fb⁻¹.
- Two OS electron or muon, $N_j \ge 2$, $N_b \ge 1$, $p_T^{miss} > 80 GeV$ and $M_{T2}(ll) > 100 GeV$.
- Main discriminating variable: $M_{T2}(ll)$.
- Events classified by p_T^{miss} , $M_{T2}(ll)$ and $M_{T2}(blbl)$.

Backgrounds, validated in several control regions

• Main backgrounds are $t\bar{t}$ and single top quark events with either severely mismeasured p_T^{miss} or misidentified leptons.

Phys. Rev. D 97, 032009 (2018)

STOP 2 LEPTONS SEARCH

Interpret results in terms of exclusion limits on simplified models of SUSY.

Stop masses excluded up to 800 GeV

Pheno2020

STOP 2 LEPTONS SEARCH: compressed stop

Event selection and strategy

- Only **2016 dataset** used, 36 fb^{-1} .
- OS electron or muon pair and $p_T^{miss} > 140 GeV$.
- Search for compressed stop: $m_W \leq \Delta m(\tilde{t}, \tilde{\chi}_0^1) \leq m_t$
- Main discriminating variable: $M_{T2}(ll)$.
- Events classified by N_i , N_b , ISR_{jets} , channels and $M_{T2}(ll)$.

Backgrounds

Main backgrounds: $t\bar{t}$, tW and WW.

JHEP 11 (2018) 079 l^{\pm}

35.9 fb⁻¹ (13 TeV)

 0^2

р

CMS

