## Charm-meson Triangle Singularity in $e^{+} e^{-}$annihilation into $D^{* 0} \bar{D}^{0} \gamma$

Speaker: Jun Jiang (Shandong University)
Email: jiangjun87@sdu.edu.cn
Co-workers: Eric Braaten, Liping He and Kevin Ingles (The Ohio State University)

```
arXiv:2004.12841 [pdf, other] hep-ph
```

Charm-meson Triangle Singularity in $e^{+} e^{-}$Annihilation into $D^{* 0} \bar{D}^{0}+\gamma$ Authors: Eric Braaten, Li-Ping He, Kevin Ingles, Jun Jiang

## CONTENTS

1. Introduction: $X(3872)$ and Triangle Singularity
2. $e^{+} e^{-} \rightarrow X(3872)+\gamma$
3. $e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0}+\gamma$
4. Summary

- First exotic hadron discovered (S. K. Choi, et al. [Belle Collaboration], 2003)
- JPC = $1^{++}$(R. Aaij, et al. [LHCb Collaboration], 2013)
- 7 different decay modes
- The internal structure of $X(3872)$ is under debate.

Compact tetraquark state, $X_{c 1}(2 \mathrm{P})$ charmonium, D*0Dbar ${ }^{0}$ molecule state, mixed molecule-charmonium state

- The radius of tetraquark is similar to that of charmonium state, less than 1 fermi.
- For molecule state, the binding energy is small, resulting in radius as large as several fermi.
- For $\mathrm{X}(3872)$, the difference between $\mathrm{M}_{\mathrm{x}}$ and mass threshold of $\mathrm{D}^{*} 0 \mathrm{Dbar}{ }^{0}$ is

$$
E_{X} \equiv M_{X}-\left(M_{* 0}+M_{0}\right)=(+0.01 \pm 0.18) \mathrm{MeV}
$$

(M. Tanabashi et al. [Particle Data Group], 2018)

Binding energy of about 0.2 MeV corresponds to radius of 5 fermi.

## Triangle Singularity



Matrix element has logarithmic branch point when the 3 particles forming the triangle are all simultaneously on-shell

Cross section may diverge as $\log ^{2}$ at center-of mass energy determined by masses of particle in triangle

## Triangle Singularity



Matrix element has logarithmic branch point when the 3 particles forming the triangle

In Chapter 2, we discuss


Feynman diagrams for $e^{+} e^{-} \rightarrow X+\gamma$ from rescattering of $D^{* 0} \bar{D}^{* 0}$. are all simultaneously on-shell

Cross section may diverge as $\log ^{2}$ at center-of mass energy determined by masses of particle in triangle

## Triangle Singularity



If 2 particles in the triangle scatter elastically differential cross section may diverge as $\log ^{2}$

Schmid cancellation
If differential cross section is integrated over $t$

$$
\begin{array}{ll}
\log ^{2} \text { divergence is canceled } & \text { Schmid } 1967 \\
\text { but log divergence remains } & \text { Anisovitch \& Anisovitch } 1995
\end{array}
$$

## Triangle Singularity <br> 

If 2 particles in the triangle scatter elastically differential cross section may diverge as $\log ^{2}$


Feynman diagrams for $e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0}+\gamma$ with a charm-meson loop.

Schmid cancellation
If differential cross section is integrated over $t$

$$
\log ^{2} \text { divergence is canceled }
$$

Schmid 1967
but log divergence remains

E. Braaten, L. P. He and K. Ingles studied using nonrelativistic framework in PRD 101, 014021 (2020)

Within relativistic framework:

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=32 \pi^{2} \alpha^{3} \nu^{2}\left|\gamma_{X}\right| M_{X}^{3} M_{* 0}^{2}\left(\frac{s-M_{X}^{2}}{s}\right)^{5}\left|F\left(s, M_{X}^{2}-i M_{X} \Gamma_{X}\right)\right|^{2} \\
& \times \times\left[\left|A_{0}-\frac{1}{\sqrt{5}} A_{2}\right|^{2}\left(1-\cos ^{2} \theta\right)+\frac{9}{40}\left|A_{2}\right|^{2}\left(1+\cos ^{2} \theta\right)\right]
\end{aligned}
$$

$\sqrt{ }$ s: center-of-mass energy $Y_{x}$ : binding momentum of $X$ $\Gamma_{X}$ : decay width of $X$ $\mathrm{E}_{\mathrm{x}}$ : binding energy of X

Loop amplitude $\mathrm{F}\left(\mathrm{s}, \mathrm{M}^{2} \mathrm{x}-\mathrm{i} \mathrm{M}_{\mathrm{x}} \Gamma_{\mathrm{x}}\right)$ has a log branch point at $\mathrm{s}_{\Delta}$ with $\Gamma_{\mathrm{x}}$ and $\mathrm{E}_{\mathrm{x}}=0$.

$$
s_{\triangle}=4 M_{* 0}^{2}+\left(M_{* 0} / M_{0}\right)\left(M_{* 0}-M_{0}\right)^{2} .
$$

M*0: mass of D*0

$$
M_{0} \text { : mass of } D^{0}
$$






Conditions for triangle singularity

(1) All 3 legs of triangle are on-shell
(2) $\mathrm{D}^{* 0}$ and Dbar0 move into the same direection
(3) Velocity of Dbar0 $>=$ velocity of $\mathrm{D}^{*} 0$


Vs: center-of-mass energy $\checkmark$ u: invariant mass of D*oDbar ${ }^{0}$

Vs: $\mathbf{4 0 1 3 . 7} \mathbf{~ 4 0 1 6 . 4 ~ M e V}$
u: 15.010~14.990 GeV2

Triangle Singularity Range

$$
\begin{aligned}
& 4 M_{* 0}^{2}<s \leq s_{\triangle}=4 M_{* 0}^{2}+\left(M_{* 0} / M_{0}\right)\left(M_{* 0}-M_{0}\right)^{2} \\
& u_{\Delta}(s)=\left(M_{* 0}+M_{0}\right)^{2}+\frac{\left[\left(M_{* 0}-M_{0}\right) \sqrt{s}-\left(M_{* 0}+M_{0}\right) \sqrt{s-4 M_{* 0}^{2}}\right]^{2}}{4 M_{* 0}^{2}}
\end{aligned}
$$




Dalitz plot for $\sqrt{ } \mathrm{s}=4014.7$ MeV with zero $\mathrm{D}^{* 0}$ width
$>$ Besides the Dbar*0 band, we have the narrow triangle singularity band at $u_{\Delta}=14.993 \mathrm{GeV}^{2}$


Dalitz plot for $\sqrt{ } \mathrm{s}=4014.7$ MeV with zero $\mathrm{D}^{* 0}$ width
> Besides the Dbar*0 band, we have the narrow triangle singularity band at $\mathbf{u}_{\Delta}=14.993 \mathrm{GeV}^{2}$.
$>$ Smaller density when $t$ approaches to the Dbar*o band along the triangle singularity line.

Differential cross section do/dudt for $\sqrt{ } \mathrm{s}=4014.7 \mathrm{MeV}, \mathrm{t}=4.0209 \mathrm{GeV}^{2}$


Triangle singularity: $\mathrm{u}_{\Delta}=14.993 \mathrm{GeV}^{2}$
$>\log ^{2}$ divergence for $\Gamma_{\mathrm{X}}=0$

Differential cross section do/dudt for $\sqrt{ } \mathrm{s}=4014.7 \mathrm{MeV}, \mathrm{t}=4.0209 \mathrm{GeV}^{2}$


Triangle singularity: $\mathrm{u}_{\Delta}=14.993 \mathrm{GeV}^{2}$
$>\log ^{2}$ divergence for $\Gamma_{\mathrm{X}}=0$
$>$ For $\left|\mathrm{E}_{\mathrm{x}}\right|=0.05 \mathrm{MeV}, \Gamma_{\mathrm{X}}=$ $\Gamma_{* 0}$, no narrow peak from triangle singularity.

Differential cross section dб/du for $\sqrt{ } \mathrm{s}=4014.7 \mathrm{MeV}$ with physical $\mathrm{D}^{* 0}$ width


## Triangle singularity:

$\mathrm{u}_{\Delta}=14.993 \mathrm{GeV}^{2}$
> Tree dominates, no peak from triangle singularity.

Differential cross section do/du for $\sqrt{ } \mathrm{s}=4014.7 \mathrm{MeV}$ with zero $\mathrm{D}^{* 0}$ width


Triangle singularity: $\mathrm{u}_{\Delta}=14.993 \mathrm{GeV}^{2}$
$>$ Tree diverges as $1 / \Gamma_{* 0}$
> Interference+Loop diverges as Log.
$>$ No peak from triangle singularity too.

Schmid Cancellation

$$
\frac{d \sigma_{\mathrm{loop}}}{d u}+\frac{d \sigma_{\mathrm{int}}}{d u} \approx \frac{\pi \alpha^{3} \nu^{2} \delta^{4}}{6 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$

- d $\sigma / d u d t$, Log $^{2}$ divergences
- do/du, $\log ^{2}$ cancellation ( $\mathbf{Y}_{\mathbf{x}}, \Gamma_{* 0}$ go to 0$)_{, ~} \times \operatorname{Re}\left[\frac{M_{X} F(s, u)}{-i \sqrt{u_{-}+2 i M_{* 0} \Gamma_{* 0}} / 2}\left(\begin{array}{c}32 \pi \delta M_{X} F(s, u)^{*} \sqrt{\omega} \\ -\gamma_{X}+i \sqrt{u_{-}-2 i M_{* 0} \Gamma_{* 0}} / 2 \\ \text { Cancellation }^{2}\end{array}\right)\right.$

$$
\left.\left.+\frac{\delta^{2}+s_{-}-u_{-}-2 i M_{* 0} \Gamma_{* 0}}{\delta^{2}} \log \frac{\left(\delta+\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma \Gamma_{* 0}}{\left(\delta-\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}+\frac{4 \sqrt{u_{-}}}{\delta}\right)\right]
$$

$$
\begin{aligned}
& \text { s.: } s-4 M_{* 0}{ }^{2} \\
& u_{\text {a }}: u-\left(M_{*}+M_{0}\right)^{2} \\
& t_{t}: t-M * 0^{2} \\
& \delta: M * M_{0}=M_{0} \\
& x: s / \delta
\end{aligned}
$$

Schmid Cancelation

- d $\sigma /$ dudt, Log ${ }^{2}$ divergences

Log divergence survives

$$
\frac{d \sigma_{\text {loop }}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \approx \frac{\pi \alpha^{3} \nu^{2} \delta^{4}}{6 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$

$$
\left.\left.+\frac{\delta^{2}+s_{-}-u_{-}-2 i M_{* 0} \Gamma_{* 0}}{\delta^{2}} \log \frac{\left(\delta+\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}{\left(\delta-\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}+\frac{4 \sqrt{u_{-}}}{\delta}\right)\right]
$$

$$
\begin{aligned}
& \text { s.: } s-4 M_{* 0}{ }^{2} \\
& u_{\text {a }}: u-\left(M_{*}+M_{0}\right)^{2} \\
& t_{t}: t-M * 0^{2} \\
& \delta: M *-M_{0}= \\
& x: s . \delta
\end{aligned}
$$

## Schmid Cancelation <br> - d $\sigma / d u d t$, Log $^{2}$ divergences <br> $$
\frac{d \sigma_{\text {loop }}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \approx \frac{\pi \alpha^{3} \nu^{2} \delta^{4}}{6 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$


Log divergence survives

$$
\begin{array}{r}
\left.\left.+\frac{\delta^{2}+s_{-}-u_{-}-2 i M_{* 0} \Gamma_{* 0}}{\delta^{2}} \log \frac{\left(\delta+\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma \Gamma_{* 0}}{\left(\delta-\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}+\frac{4 \sqrt{u_{-}}}{\delta}\right)\right] \\
\frac{d \sigma_{\text {loop }}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \longrightarrow \frac{\alpha^{3} \nu^{2} \delta^{2}}{48 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right) \\
\quad \times\left(-\frac{x^{2} \log ((1-x) / x)+x}{1-x}\right) \log \frac{2 \delta}{\left|\sqrt{u_{-}}+\sqrt{s_{-}-\delta \mid}\right|}
\end{array}
$$

$$
\begin{aligned}
& \text { s.: } s-4 M_{* 0}{ }^{2} \\
& u_{\text {: }} u-\left(M_{*}+M_{0}\right)^{2} \\
& t_{t}: t-M * 0^{2} \\
& \delta: M * M_{0}=M_{0} \\
& x: s . \delta
\end{aligned}
$$

## Schmid Cancelation <br> $$
\frac{d \sigma_{\mathrm{loop}}}{d u}+\frac{d \sigma_{\mathrm{int}}}{d u} \approx \frac{\pi \alpha^{3} \nu^{2} \delta^{4}}{6 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$ <br> - d $\sigma / d u d t$, Log $^{2}$ divergences


Log divergence survives

$$
\left.+\frac{\delta^{2}+s_{-}-u_{-}-2 i M_{* 0} \Gamma_{* 0}}{\delta^{2}} \log \frac{\left(\delta+\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}{\left(\delta-\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}+\frac{4 \sqrt{u_{-}}}{\delta}\right)
$$

$$
\frac{d \sigma_{\mathrm{loop}}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \longrightarrow \frac{\alpha^{3} \nu^{2} \delta^{2}}{48 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$

- In do/du, Log divegences of both Interference+Loop and Tree terms

$$
\times\left(-\frac{x^{2} \log ((1-x) / x)+x}{1-x}\right) \log \frac{2 \delta}{\left|\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right|},
$$

$$
\begin{aligned}
& \frac{d \sigma_{\text {tree }}}{d u} \longrightarrow \frac{\alpha^{3} \nu^{2} \delta^{2}}{48 M_{* 0}^{2}}\left[\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right) \frac{\pi s_{-}}{2 M_{* 0} \Gamma_{* 0}} \theta\left(\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right)\right. \\
& +\frac{3}{2}\left((1-x)\left|A_{0}\right|^{2}-\frac{1-3 x}{3}\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{17-11 x}{20}\left|A_{2}\right|^{2}\right) \\
& \text { s.: } s-4 M * 0^{2} \\
& \text { u.: } u-\left(M *_{0}+M_{0}\right)^{2} \\
& \text { t. : t-M*0 } \\
& \times \log \frac{2 \delta}{\left|\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right|} . \\
& \delta: \mathrm{M}_{* 0}-\mathrm{M}_{0} \\
& \text { x:s/ס }
\end{aligned}
$$

## Schmid Cancelation <br> $$
\frac{d \sigma_{\text {loop }}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \approx \frac{\pi \alpha^{3} \nu^{2} \delta^{4}}{6 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$ <br> - d $\sigma / d u d t$, Log $^{2}$ divergences

 Log divergence survives

$$
\left.+\frac{\delta^{2}+s_{-}-u_{-}-2 i M_{* 0} \Gamma_{* 0}}{\delta^{2}} \log \frac{\left(\delta+\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}{\left(\delta-\sqrt{u_{-}}\right)^{2}-s_{-}+2 i M_{* 0} \Gamma_{* 0}}+\frac{4 \sqrt{u_{-}}}{\delta}\right)
$$

$$
\frac{d \sigma_{\text {loop }}}{d u}+\frac{d \sigma_{\text {int }}}{d u} \longrightarrow \frac{\alpha^{3} \nu^{2} \delta^{2}}{48 M_{* 0}^{2}}\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right)
$$

- In do/du, Log divegences of both Interference+Loop and Tree terms are completely overwhelmed by the rapidly increasing contribution from the

$$
\times\left(-\frac{x^{2} \log ((1-x) / x)+x}{1-x}\right) \log \frac{2 \delta}{\left|\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right|},
$$ opening up of the Dbar*0 resonance

$$
\begin{aligned}
& \frac{d \sigma_{\text {tree }}}{d u} \longrightarrow \frac{\alpha^{3} \nu^{2} \delta^{2}}{48 M_{* 0}^{2}}\left[\left(\left|A_{0}-\frac{A_{2}}{\sqrt{5}}\right|^{2}+\frac{9}{20}\left|A_{2}\right|^{2}\right) \frac{\pi s_{-}}{2 M_{* 0} \Gamma_{* 0}} \theta\left(\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right)\right. \\
& \times \log \frac{2 \delta}{\left|\sqrt{u_{-}}+\sqrt{s_{-}}-\delta\right|}
\end{aligned}
$$ from Tree diagram.

No peak in do/dudt for physical $\Gamma_{* 0}$ width
No peak in do/du for physical/zero $\Gamma_{*_{0}}$ width

Can we identify the charm-meson triangle singularity?
This matters, because it supports for the identification of $X$ as a weakly bound charm-meson molecule.

Differential cross section do/dt for $\sqrt{ } \mathbf{s}=4014.7 \mathrm{MeV}$ with $\mathbf{u}<\mathbf{U}_{\Delta}$


Differential cross section do/dt for $\sqrt{ } \mathbf{s}=4014.7 \mathrm{MeV}$ with $\mathbf{u}<\mathbf{u}_{\Delta}$


Differential cross section do/dt for $\sqrt{ } \mathbf{s}=4014.7 \mathrm{MeV}$ with $\mathbf{u}<\mathbf{u}_{\Delta}$


Differential cross section do/dt for $\sqrt{ } \mathbf{s}=4014.7 \mathrm{MeV}$ with $\mathbf{u}<\mathbf{u}_{\Delta}$


## Observation of Triangle Singularity $\boldsymbol{X}(3872)$ being Molecule State

$>$ The observation of the narrow peak in the cross section of $e^{+} e^{-} \rightarrow X+\gamma$ would support the identification of $X$ as a weakly bound charm-meson molecule.
$\checkmark$ The charm-meson triangle singularity in $e^{+} e^{-} \rightarrow D^{* 0} \bar{D}^{0}+\gamma$ cannot be observed as a peak in either do/dudt or do/du directly .
$\checkmark$ Charm-meson triangle singularity can be observed indirectly in $\mathrm{d} \sigma / \mathrm{dt}$ with $\mathrm{u}<\mathrm{u}_{\Delta}$ as a local minimum.
$\checkmark$ The observation of this minimum provide additional support for the identification of $X$ as a weakly bound charm-meson molecule.

$$
|X(3872)\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{* 0} \bar{D}^{0}\right\rangle+\left|D^{0} \bar{D}^{* 0}\right\rangle\right)
$$

## Thank Youl

```
arXiv:2004.12841 [pdf,other] hep-ph
Charm-meson Triangle Singularity in \(e^{+} e^{-}\)Annihilation into \(D^{* 0} \bar{D}^{0}+\gamma\) Authors: Eric Braaten, Li-Ping He, Kevin Ingles, Jun Jiang
```

