Flavor Changing Neutral Higgs Boson meets the Top and the Tau at Hadron colliders

Rishabh Jain, with Chung Kao and Phillip Gutierrez

University of Oklahoma Phenomenology-Symposium-2020

May 4, 2020

Flavor changing in SM and Limits on Flavor anomalies

- In SM Flavor Changing neutral currents like $t \rightarrow c(u)V^0, (V^0 = \gamma, Z, h^0)$ or $h^0 \rightarrow \tau \bar{\mu}$ are absent at tree level.
- At one loop level,SM predicts $\mathcal{B}(t \to qh, Z, \gamma) \simeq 10^{-14}$ from ¹ and $\mathcal{B}(h^0 \to f_i f_j)$ is highly suppressed at one loop level, where $i \neq j$.
- Current limits on some of the flavor anomalous searches are,
 - $\tau \rightarrow \mu \gamma \precsim 4.5 \times 10^{-8}$ at 90% C.L (Belle-collaboration)
 - $\tau \rightarrow e\gamma \lesssim 1.1 \times 10^{-8}$ at 90 % C.L (BaBar Collaboration)
 - $t \rightarrow ch^0 \lesssim 1.1 \times 10^{-3}$ at 95 % C.L (ATLAS collaboration)

Rishabh Jain | rishabh.jain@ou.edu

THDM and Corrections to Yukawa sector

• The mixing of the two doublets, induce corrections to Yukawa couplings. The effective yukawa lagrangian in General 2HDM is,

$$-\sqrt{2}\mathcal{L}_{Y} = \bar{F}\left\{\left[\kappa^{F}s_{\beta-\alpha} + \rho^{F}c_{\beta-\alpha}\right]h + \left[\kappa^{F}c_{\beta-\alpha} - \rho^{F}s_{\beta-\alpha}\right]H^{0}\right\}P_{R}F - \left\{i\mathrm{sgn}(Q_{F})\rho^{F}A^{0}\right\}P_{R}F + \mathrm{H.c.}$$

where $P_{L,R} \equiv (1 \mp \gamma_5)/2$, $c_{\beta-\alpha} = \cos(\beta - \alpha)$, $s_{\beta-\alpha} = \sin(\beta - \alpha)$, and α is the mixing angle between neutral Higgs scalars in the Type II (2HDM-II) notation², κ matrices are diagonal and fixed by fermion masses to $\kappa^F = \sqrt{2}m_F/v$ with $v \simeq 246$ GeV, while ρ matrices are free and have both diagonal and off diagonal term.

Rishabh Jain | rishabh.jain@ou.edu

²J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Front, Phys. **80**, 1 (2000) and

THDM and Flavor Changing Neutral Currents

- With ρ matrix containing non diagonal terms, we have tree level FCNC's possible in gTHDM
- 2HDM-I,II,Lepton Specific, Flipped model preserves flavor symmetry by introducing additional ad-hoc symmetries.
- These models only effect the yukawa sector, Higgs couplings to bosons are independent of these model variations.

Rishabh Jain | rishabh.jain@ou.edu

Motivation for $t \rightarrow ch^0$

- $m_t > m_c + m_h$
- Current Experimental Limits are \sim 10 orders of magnitude higher than SM expectation
- If FCNH coupling $\rho_{tc} \sim \mathcal{O}(1)$, can drive Electroweak Baryogenesis³.
- Promising results from previous phenomenological studies,

•
$$t \rightarrow ch^0 \rightarrow cb\bar{b}$$

Kao,Cheng,Hou and Sayre (2012)
• $t \rightarrow ch^0 \rightarrow cZZ^*$

Chen, Hou, Kao and Kohda, (2013)

• $t \rightarrow ch^0 \rightarrow cWW^*$ Jain and Kao (2019)

Rishabh Jain | rishabh.jain@ou.edu

³Fuyuto.et.al doi:10.1016/j.physletb.2017.11.073

Jain, Kao, & Gutierrez (OU)

Translating Experimental Constraints

• The Branching Fraction for $t \rightarrow ch^0$ is given as, Using $m_t = 173.2$ GeV, $M_h = 125.1$ GeV and $m_c = 1.42$ GeV

$$\mathcal{B}_{t \to ch^0} = \frac{c_{\beta\alpha}^2 m_t}{32\pi\Gamma_t} \{ 0.48 |\tilde{\rho}_{tc}|^2 \} \times \lambda^{1/2} (1, x_c^2, x_h^2)$$
(1)

Where
$$\tilde{\rho}_{tc} = \sqrt{\frac{|\rho_{tc}|^2 + |\rho_{ct}|^2}{2}}$$
,
 $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$, $x_i = m_i/m_t$

• Current limits $\mathcal{B}_{t \to ch^0} \lesssim 1.1 \times 10^{-3}$ gives $\lambda_{tc} = \rho_{tc} c_{\beta-\alpha} \lesssim 0.064^{-4}$

Rishabh Jain | rishabh.jain@ou.edu

Parameters and Channel of study

• Our production channel is top pair production at LHC. With the following following decay modes,

• $t \to ch^0 \to c\tau^+\tau^-$, Other top decays via $t \to bjj$ | Work in progress |

Rishabh Jain | rishabh.jain@ou.edu

Channel of Study and Important Backgrounds

- We are considering leptonic decays of τ letpons here.
- Important backgrounds are,
 - $t\overline{t} + 2j$
 - $t\bar{t}W^{\pm}$ and $t\bar{t}Z$
 - $b\bar{b}jjW^+W^-$,
 - $b\bar{b}jj\tau^{+}\tau^{-}$

Rishabh Jain | rishabh.jain@ou.edu

(日) (同) (王) (王) (王)

Event Generation and Selection

- Madgraph (tree level) → Pythia8 → Delphes
- We apply minimal cuts to get a stable cross section for event generation at tree-level and later use K-factor to scale them to NLO.
- · We extract events from the samples which follows,
 - $P_T(b,j) \ge 20 \text{ GeV}$
 - $|\eta(b)| \leq 4.7$, $|\eta(j)| \leq 2.5$
 - $P_T(\ell) \ge 10$ GeV, and two OS leptons , $|\eta(\ell)| \le 2.5$
 - $E_T \ge 25 \text{ GeV}, \ (\ell\ell, jj, bj, bb, \ell j, \ell b) \ge 0.4$
 - $P_T(leading\ell) \ge 20 \text{ GeV}$
 - We also apply b veto. Remove all the event having more than one b with $P_T \geq 20~{\rm GeV}$ and $|\eta| < 4.7$

Rishabh Jain | rishabh.jain@ou.edu

Event Selection

- To reconstruct Higgs mass we apply collinear approximation to reconstruct τ momenta.
- Under collinear approximation⁵, $P_{\tau_i} = P_{\ell_i}/x_i$
- We only select those event which satisfy $0 \le x_i \le 1$ Where i = 1,2.

Signal ($\lambda_{tc} = 0.064$)	$t\bar{t}$ + 2j	$b\bar{b}jj au au$	$t\bar{t}W$	$b\bar{b}jjWW$	$t\bar{t}Z$
0.18	147.1	1.9	0.57	0.47	0.34

Table: Background and Signal cross sections in fb

Rishabh Jain | rishabh.jain@ou.edu

⁵Higgs decay to $\tau^+\tau^-$ a possible signature of intermediate mass higgs bosons at high energy hadron colliders. Nuclear Physics B, 297(2):221 – 243, 1988.

Jain, Kao, & Gutierrez (OU)

Training Variables

Rishabh Jain | rishabh.jain@ou.edu

FCNH with $\tau\tau$

Training Variables

Rishabh Jain | rishabh.jain@ou.edu

Jain, Kao, & Gutierrez (OU)

Pre Selection cuts for Training

- As a case study we choose two sets of relaxed mass cuts, for Set-I,
 - $M(b, j_1, j_2) \le 300 \text{ GeV}$ and $M(j_1, j_2) \le 150 \text{ GeV}$
 - $M(\ell,\ell) \leq 120 \text{ GeV}$ and $M_T(\ell,\ell,E_T) \leq 180 \text{ GeV}$
 - $M_{col}(\tau,\tau) \leq$ 300 GeV and $M_{col}(c,\tau,\tau) \leq$ 400 GeV
 - Ec $\leq 120 \text{ GeV}$

Set-II is same, except for $M(\ell, \ell) \leq 100$ GeV and $M_{j_1j_2} \leq 120$ GeV

Rishabh Jain | rishabh.jain@ou.edu

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

Process	After Selection Cuts	Set 1 Cuts	Set 2 Cuts
$t\bar{t}$ + 2j	147.1	12.9	9.3
$bar{b}jj au au$	1.9	0.51	0.47
$t\bar{t}W$	0.57	0.07	0.05
$bar{b}jjWW$	0.47	0.009	0.007
$t\bar{t}Z$	0.34	0.025	0.02
Total	150.4	13.6	9.9
Signal ($\lambda_{tc} = 0.064$)	0.18	9.5×10^{-2}	9×10^{-2}

Table: Cut flow for Background and Signal cross sections in fb

Rishabh Jain | rishabh.jain@ou.edu

Here we have used TMVA ⁶ for our BDT analysis,

Figure: BDT discriminator from the two different Pre selection cuts

Rishabh Jain | rishabh.jain@ou.edu

⁶TMVA,arXiv:physics/0703039

Jain, Kao, & Gutierrez (OU)

Current Estimate of the Significance

Figure: Preliminary Estimates of Significance

Rishabh Jain | rishabh.jain@ou.edu

Jain, Kao, & Gutierrez (OU)

Discovery Potential at Parton Level

Rishabh Jain | rishabh.jain@ou.edu

Jain, Kao, & Gutierrez (OU)

Discovery Potential at Parton Level

Rishabh Jain | rishabh.jain@ou.edu

Jain, Kao, & Gutierrez (OU)

FCNH with $\tau \tau$

Conclusion and Future Work

- FCNC's presents an exciting new physics channel to probe. If detected, can improve our understanding of the flavor structure of the nature.
- The $t \rightarrow ch^0$ also holds promising future. However the study we presented is limited for one τ decay modes. Including other decay modes for τ , can really improve the expectation for current and future hadron colliders.
- I have only presented estimates for 13 TeV, we are going to extend it to 14 and 27 TeV as well.
- Extra top coupling holds a very rich phenomenology, and In the future I would like work more on this, to find out what it can tell us about nature.

Rishabh Jain | rishabh.jain@ou.edu

Image: A marked and A marked

Jain, Kao, & Gutierrez (OU)

Parton Level Mass cuts

- $|M(j_1, j_2) m_W| \le 0.15 \times m_W$ and $|M(b, j_1, j_2) m_t| \le 0.20 \times m_t$
- 40 GeV $\leq M_T(\ell, \ell, E_T) \leq$ 140 GeV and 80 GeV $\leq M_T(c, \ell, \ell, E_T) \leq$ 180 GeV
- $|M_{col}(\tau,\tau) m_h| \le 0.35 \times m_h$ and $|M_{col}(c,\tau,\tau) m_t| \le 0.45 \times m_t$
- 32 GeV $\leq E_c \leq$ 52 GeV

Cross sections at Parton level

66	
SC	MRC
617.76	0.96
4.32	0.06
1.41	0.006
1.22	4.03×10^{-4}
0.76	3.3×10^{-4}
625.5	1.03
0.51	0.39
	617.76 4.32 1.41 1.22 0.76 625.5

Table: Cut flow for Background and Signal cross sections in fb

