Flavor Changing Neutral Higgs Boson meets the Top and the Tau at Hadron colliders

Rishabh Jain, with Chung Kao and Phillip Gutierrez

University of Oklahoma
Phenomenology-Symposium-2020

May 4, 2020

Flavor changing in SM and Limits on Flavor anomalies

- In SM Flavor Changing neutral currents like $t \rightarrow c(u) V^{0},\left(V^{0}=\gamma, Z, h^{0}\right)$ or $h^{0} \rightarrow \tau \bar{\mu}$ are absent at tree level.
- At one loop level,SM predicts $\mathcal{B}(t \rightarrow q h, Z, \gamma) \simeq 10^{-14}$ from ${ }^{1}$ and $\mathcal{B}\left(h^{0} \rightarrow f_{i} f_{j}\right)$ is highly suppressed at one loop level, where $i \neq j$.
- Current limits on some of the flavor anomalous searches are,
- $\tau \rightarrow \mu \gamma \lesssim 4.5 \times 10^{-8}$ at 90% C.L (Belle-collaboration)
- $\tau \rightarrow e \gamma \lesssim 1.1 \times 10^{-8}$ at 90 \% C.L (BaBar Collaboration)
- $t \rightarrow c h^{0} \precsim 1.1 \times 10^{-3}$ at 95% C.L (ATLAS collaboration)

Rishabh Jain | rishabh.jain@ou.edu
${ }^{1}$ Aguilar-Saavedra arxiv:hep-ph/0409342

THDM and Corrections to Yukawa sector

- The mixing of the two doublets, induce corrections to Yukawa couplings. The effective yukawa lagrangian in General 2HDM is,

$$
\begin{aligned}
-\sqrt{2} \mathcal{L}_{Y}= & \bar{F}\left\{\left[\kappa^{F} s_{\beta-\alpha}+\rho^{F} c_{\beta-\alpha}\right] h+\left[\kappa^{F} c_{\beta-\alpha}-\rho^{F} s_{\beta-\alpha}\right] H^{0}\right\} P_{R} F \\
& -\left\{i \operatorname{sgn}\left(Q_{F}\right) \rho^{F} A^{0}\right\} P_{R} F+\text { H.c. }
\end{aligned}
$$

where $P_{L, R} \equiv\left(1 \mp \gamma_{5}\right) / 2, c_{\beta-\alpha}=\cos (\beta-\alpha), s_{\beta-\alpha}=\sin (\beta-\alpha)$, and α is the mixing angle between neutral Higgs scalars in the Type II ($2 \mathrm{HDM}-\mathrm{II}$) notation ${ }^{2}, \kappa$ matrices are diagonal and fixed by fermion masses to $\kappa^{F}=\sqrt{2} m_{F} / v$ with $v \simeq 246 \mathrm{GeV}$, while ρ matrices are free and have both diagonal and off diagonal term.

Rishabh Jain | rishabh.jain@ou.edu
${ }^{2}$ J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, Fronts Phys. 80, 1 (2000)

THDM and Flavor Changing Neutral Currents

- With ρ matrix containing non diagonal terms, we have tree level FCNC's possible in gTHDM
- 2HDM-I,II,Lepton Specific, Flipped model preserves flavor symmetry by introducing additional ad-hoc symmetries.
- These models only effect the yukawa sector, Higgs couplings to bosons are independent of these model variations.

Rishabh Jain | rishabh.jain@ou.edu

Motivation for $t \rightarrow c h^{0}$

- $m_{t}>m_{c}+m_{h}$
- Current Experimental Limits are ~ 10 orders of magnitude higher than SM expectation
- If FCNH coupling $\rho_{t c} \sim \mathcal{O}(1)$, can drive Electroweak Baryogenesis ${ }^{3}$.
- Promising results from previous phenomenological studies,
- $t \rightarrow c h^{0} \rightarrow c b \bar{b}$

Kao, Cheng, Hou and Sayre (2012)

- $t \rightarrow c h^{0} \rightarrow c Z Z^{*}$

Chen, Hou,Kao and Kohda,(2013)

- $t \rightarrow c h^{0} \rightarrow c W W^{*}$

Jain and Kao (2019)
Rishabh Jain | rishabh.jain@ou.edu
${ }^{3}$ Fuyuto.et.al doi:10.1016/j.physletb.2017.11.073

Translating Experimental Constraints

- The Branching Fraction for $t \rightarrow c h^{0}$ is given as, Using $m_{t}=173.2$ $\mathrm{GeV}, M_{h}=125.1 \mathrm{GeV}$ and $m_{c}=1.42 \mathrm{GeV}$

$$
\begin{equation*}
\mathcal{B}_{t \rightarrow c h^{0}}=\frac{c_{\beta \alpha}^{2} m_{t}}{32 \pi \Gamma_{t}}\left\{0.48\left|\tilde{\rho}_{t c}\right|^{2}\right\} \times \lambda^{1 / 2}\left(1, x_{c}^{2}, x_{h}^{2}\right) \tag{1}
\end{equation*}
$$

Where $\tilde{\rho}_{t c}=\sqrt{\frac{\left|\rho_{t c}\right|^{2}+\left|\rho_{c t}\right|^{2}}{2}}$,
$\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z, x_{i}=m_{i} / m_{t}$

- Current limits $\mathcal{B}_{t \rightarrow c h^{0}} \lesssim 1.1 \times 10^{-3}$ gives $\lambda_{t c}=\tilde{\rho_{t c}} c_{\beta-\alpha} \lesssim 0.064{ }^{4}$

Rishabh Jain | rishabh.jain@ou.edu

Parameters and Channel of study

- Our production channel is top pair production at LHC. With the following following decay modes,
- $t \rightarrow c h^{0} \rightarrow c \tau^{+} \tau^{-}$, Other top decays via $t \rightarrow b j j[$ Work in progress $]$

Rishabh Jain | rishabh.jain@ou.edu

Channel of Study and Important Backgrounds

- We are considering leptonic decays of τ letpons here.
- Important backgrounds are,
- $t \bar{t}+2 j$
- $t \bar{t} W^{ \pm}$and $t \bar{t} Z$
- $b \bar{b} j j W^{+} W^{-}$,
- $b \bar{b} j j \tau^{+} \tau^{-}$

Rishabh Jain | rishabh.jain@ou.edu

Event Generation and Selection

- Madgraph (tree level) \rightarrow Pythia8 \rightarrow Delphes
- We apply minimal cuts to get a stable cross section for event generation at tree-level and later use K-factor to scale them to NLO.
- We extract events from the samples which follows,
- $P_{T}(b, j) \geq 20 \mathrm{GeV}$
- $|\eta(b)| \leq 4.7,|\eta(j)| \leq 2.5$
- $P_{T}(\ell) \geq 10 \mathrm{GeV}$, and two OS leptons , $|\eta(\ell)| \leq 2.5$
- $E_{T} \geq 25 \mathrm{GeV}$, $(\ell \ell, j j, b j, b b, \ell j, \ell b) \geq 0.4$
- $P_{T}($ leading $\ell) \geq 20 \mathrm{GeV}$
- We also apply b veto. Remove all the event having more than one b with $P_{T} \geq 20 \mathrm{GeV}$ and $|\eta|<4.7$

Rishabh Jain | rishabh.jain@ou.edu

Event Selection

- To reconstruct Higgs mass we apply collinear approximation to reconstruct τ momenta.
- Under collinear approximation ${ }^{5}, P_{\tau_{i}}=P_{\ell_{i}} / x_{i}$
- We only select those event which satisfy $0 \leq x_{i} \leq 1$ Where $\mathrm{i}=1,2$.

Signal $\left(\lambda_{t c}=0.064\right)$	$t \bar{t}+2 \mathrm{j}$	$b \bar{b} j j \tau \tau$	$t \bar{t} W$	$b \bar{b} j j W W$	$t \bar{t} Z$
0.18	147.1	1.9	0.57	0.47	0.34

Table: Background and Signal cross sections in fb

Rishabh Jain | rishabh.jain@ou.edu
${ }^{5}$ Higgs decay to $\tau^{+} \tau^{-}$a possible signature of intermediate mass higgs bosons at high energy hadron colliders. Nuclear Physics B, 297(2):221-243, 1988.

Training Variables

Rishabh Jain | rishabh.jain@ou.edu

Training Variables

Rishabh Jain | rishabh.jain@ou.edu

Pre Selection cuts for Training

- As a case study we choose two sets of relaxed mass cuts, for Set-I,
- $M\left(b, j_{1}, j_{2}\right) \leq 300 \mathrm{GeV}$ and $M\left(j_{1}, j_{2}\right) \leq 150 \mathrm{GeV}$
- $M(\ell, \ell) \leq 120 \mathrm{GeV}$ and $M_{T}\left(\ell, \ell, E_{T}\right) \leq 180 \mathrm{GeV}$
- $M_{c o l}(\tau, \tau) \leq 300 \mathrm{GeV}$ and $M_{c o l}(c, \tau, \tau) \leq 400 \mathrm{GeV}$
- $\mathrm{Ec} \leq 120 \mathrm{GeV}$

Set-II is same, except for $M(\ell, \ell) \leq 100 \mathrm{GeV}$ and $M_{j_{1} j_{2}} \leq 120 \mathrm{GeV}$

Rishabh Jain | rishabh.jain@ou.edu

Process	After Selection Cuts	Set 1 Cuts	Set 2 Cuts
$t \bar{t}+2 j$	147.1	12.9	9.3
$b \bar{b} j j \tau \tau$	1.9	0.51	0.47
$t \bar{t} W$	0.57	0.07	0.05
$b \bar{b} j j W W$	0.47	0.009	0.007
$t \bar{t} Z$	0.34	0.025	0.02
Total	150.4	13.6	9.9
Signal $\left(\lambda_{t c}=0.064\right)$	0.18	9.5×10^{-2}	9×10^{-2}

Table: Cut flow for Background and Signal cross sections in fb

Rishabh Jain | rishabh.jain@ou.edu

Here we have used TMVA ${ }^{6}$ for our BDT analysis,

Figure: BDT discriminator from the two different Pre selection cuts

Rishabh Jain | rishabh.jain@ou.edu
${ }^{6}$ TMVA, arXiv:physics/0703039

Current Estimate of the Significance

Figure: Preliminary Estimates of Significance

Rishabh Jain | rishabh.jain@ou.edu

Discovery Potential at Parton Level

Rishabh Jain | rishabh.jain@ou.edu

Discovery Potential at Parton Level

Rishabh Jain | rishabh.jain@ou.edu

Conclusion and Future Work

- FCNC's presents an exciting new physics channel to probe. If detected, can improve our understanding of the flavor structure of the nature.
- The $t \rightarrow c h^{0}$ also holds promising future. However the study we presented is limited for one τ decay modes. Including other decay modes for τ, can really improve the expectation for current and future hadron colliders.
- I have only presented estimates for 13 TeV , we are going to extend it to 14 and 27 TeV as well.
- Extra top coupling holds a very rich phenomenology, and In the future I would like work more on this, to find out what it can tell us about nature.

Rishabh Jain | rishabh.jain@ou.edu

Parton Level Mass cuts

- $\left|M\left(j_{1}, j_{2}\right)-m_{W}\right| \leq 0.15 \times m_{W}$ and $\left|M\left(b, j_{1}, j_{2}\right)-m_{t}\right| \leq 0.20 \times m_{t}$
- $40 \mathrm{GeV} \leq M_{T}\left(\ell, \ell, E_{T}\right) \leq 140 \mathrm{GeV}$ and $80 \mathrm{GeV} \leq M_{T}\left(c, \ell, \ell, E_{T}\right) \leq 180$ GeV
- $\left|M_{c o l}(\tau, \tau)-m_{h}\right| \leq 0.35 \times m_{h}$ and $\left|M_{c o l}(c, \tau, \tau)-m_{t}\right| \leq 0.45 \times m_{t}$
- $32 \mathrm{GeV} \leq E_{c} \leq 52 \mathrm{GeV}$

Cross sections at Parton level

Process	SC	MRC
$t \bar{t}+2 \mathrm{j}$	617.76	0.96
$b \bar{b} j j \tau \tau$	4.32	0.06
$t \bar{t} W$	1.41	0.006
$b \bar{b} j j W W$	1.22	4.03×10^{-4}
$t \bar{t} Z$	0.76	3.3×10^{-4}
Total	625.5	1.03
Signal $\left(\lambda_{t c}=0.064\right)$	0.51	0.39

Table: Cut flow for Background and Signal cross sections in fb

