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Can we probe the particle 
nature of DM if it interacts 
with us only gravitationally?

Q:
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Yes !A:

� By probing dark sector interactions 
from astronomical small-scale structures

� Dark sector interactions may lead to formation of dark 
galaxies and dark stars

� Dark stars are called “Exotic Compact Objects”

� Properties of such objects (e.g. size and mass) give 
information of particle nature

DM

DM

DM

DM
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Goal of this Talk

� Introduce a simple dark sector model

� Study the complete history of structure 
formation including
◦ Evolution of cosmological perturbations
◦ Formation of exotic compact objects

� Provide a map between astrophysical properties 
and particle physics parameters
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Conditions for the Model
� Self-interaction
◦ Otherwise behaves like CDM
◦ Sub-dominant (We assume 1% of total DM)

� DM does not annihilate
◦ Want final compact objects to be stable
◦ e.g.  Asymmetry, Bound states, …

� Cooling
◦ Necessary for “fragmentation”
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Mimic Baryons?

� Of course, baryons satisfy all the conditions

� Can we think about a model like baryons?

� Yes, but baryons are too complicated!

� As a starting point, we consider the simplest DS 
model
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The Simplified Model in this Work

� Contains only two particles
◦ Dark electron 𝑒!" : composes matter
◦ Dark photon 𝛾! : mediates interactions

� Only 3 model parameters: 𝑚!! , 𝑚"! , 𝛼#
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Satisfies all the conditions!

� Assume charge asymmetry
◦ Negligible dark positron abundance
◦ Final objects are stable

� Self-interaction � Cooling via bremsstrahlung
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Petraki et al, 1403.1077 



Linear Perturbation Growth
� Perturbations grow 

with time

� Can be analyzed with 
linear perturbation 
theory for
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Non-linear Regime

� Gravitational pull overcomes Hubble expansion: 
perturbations “turn-around”

� Can analyze individual mass clumps with
Jeans Mass

𝛿$% ≈ 1.686
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Calculated in the linear 
theory. See Mo, van den 
Bosch, and White 2010



Jeans Mass 𝑀!
� Maximum mass of gas that pressure can support

� If 𝑀 > 𝑀!, a mass clump collapses
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� A big mass 
perturbation after 
turnaround

� Suppose 𝑀 > 𝑀&

� Then it collapses

Schematic of Non-linear Regime
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① Adiabatic Collapse

� Temperature 
increases

�𝑀& ∝
'"

(

increases

� Adiabatic collapse 
stops at 𝑀& = 𝑀
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② Virialized Collapse

� If there’s cooling, 
it keeps collapsing

� 𝑀# = 𝑀 during the 
collapse

� Temperature
increases
(slower than
adiabatic) 14



③ Fragmentation

� Cooling becomes 
efficient as 
number density 
increases

� Temperature 
decreases, so

𝑀& ∝
'"

(
decreases
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④ Compact Objects Formation

� Cooling stops as 
optical depth 
becomes large

� Fragmentation 
stops
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Master Equation

𝑑𝐸 = −𝑃𝑑𝑉 − Λ𝑑𝑡

𝑑 log 𝑇
𝑑 log 𝜌

=
2
3
𝑚
𝜌
𝑃
𝑇
−

2𝑡$$
𝑡%&&'()*

� Mass perturbation is parameterized with 𝜌 and 𝑇

Λ is cooling rate
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Low, Linden-Bell 1976



Evolution Trajectory (𝑀 = 10"#𝑀⊙)

①

②

③

④
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Results According to Model Parameters

� Black lines : Minimum 𝑀# in 𝑀⊙ after fragmentation

� Blue lines : Corresponding compactness (𝐶 = 𝐺𝑀/𝑅)
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Fragmentation Analysis

� Our analysis can be used for any dark sector 
model

� Even for baryons, it roughly estimates the 
typical mass of stars in a galaxy

� Studying only stability of compact objects (as 
done by many people in the literature) leads to 
unrealistic conclusions
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Conclusions

� We described the complete history of structure 
formation of a simple dissipative dark sector 
model.

� We provided a map between astronomical 
properties and particle physics parameters. 
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