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What’s the goal here ? 
❖ A core-collapse supernova in our Galaxy is expected to 

create thousands of  νe events in the DUNE far detector 
❖ It will be possible to track the time evolution of the spectrum 

with such high statistics. 
❖ Oscillations will imprint information from the inner regions 

of the explosion on the observed spectra. 
❖ Neutrino-driven outflows dictate the density profiles at late 

times that directly impact neutrino oscillations and thereby 
observable signals. 

❖ In this quest, we discuss the nature of these neutrino-driven 
outflows.
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Core-collapse supernova explosion
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Oscillations within SN are more involved
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Arcones (2007)
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Supernova density profiles affect the observed neutrino spectrum on Earth !

Video file shown in the recorded talk !
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Shocks induce non-thermal features observable in DUNE !
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Neutrino-driven outflows: Subsonic and Supersonic 
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Wind vs. Breeze
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Winds - Termination shock  Breezes 

                 
Main question : What is the condition of formation of termination shock ?

Arcones 15 M⊙ (2007) Fischer 18 M⊙ (2010)



Payel Mukhopadhyay, Stanford University and SLAC, Pheno 2020

Governing equations
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T < 0.5 MeV

3 non-linear ODE
Specify Ti, Si, 

Boundary-value problem
ρf

·q = 0

(Nuclear Recombination)

Single non-linear ODE with an 
algebraic constraint

we obtain ✓
v � v2s

v

◆
dv

dr
=

2v2s
r

� GM

r2
� q̇

3v
. (13)

It is reassuring that entropy deposition helps to accelerate a subsonic flow.

From the definition of q̇, we have

v
dS

dr
=

q̇mN

T
. (14)

It must be noted that, in the absence of entropy deposition, Eq. (1) has
an integral of motion. It can be obtained directly by integrating Eq. (1)
over r, after dividing both sides by ⇢.

v2

2
� GM

r
+

Z
1

⇢

dP

dr
dr = constant. (15)

In the limit of incompressible fluid, ⇢ = const, one immediately finds the
Bernoulli equation v2/2�GM/r+P/⇢ = const. The radiation dominated
fluid considered here is, however, definitely compressible. To evaluate the
third term, we expand it, use the definition of entropy-per-baryon, and
integrate by parts,
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In other words,

q̇ = v
d

dr

✓
v2

2
+ 3v2s �
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r

◆
. (17)

We see that, in the limit of adiabatic expansion, I ⌘ v2/2 � GM/r +
TS/mN is a conserved quantity.

Our complete set of equations, Eqs. (1), (2) and (3), are thus equivalent
to the combination of Eqs. (18), (18), and (18). The complete set of
first-order non-linear di↵erential equation is:

✓
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� GM

r2
� q̇

3v
.,

q̇ = v
d

dr
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v2

2
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◆
.,

v
dS

dr
=

q̇mN

T
. (18)

This is a system of 3 equations that has to be solved by three conditions
somewhere.

5

• Energy Deposition Rate

The energy deposition rate that contributes to the increase in entropy can
be estimated as :

q̇ ⇡ q̇⌫N � q̇eN � q̇e+e� /
✓
L⌫̄e,51E

2
⌫̄e,MeV

1� x

R2
⌫6

◆
� C1T

6 � C2
T 9

⇢8
(19)

Here, x =
p

1�R2
⌫/r

2, L⌫̄e,51 is the neutrino luminosity, E⌫̄e,MeV is the
average energy, R⌫,6 is the neutrinosphere radius in units of 106cm, T
is the temperature, C1 and C2 are constants. The heating term q̇⌫N is
dominantly due to the neutrino-nucleus interaction ⌫e + n ) p + e� and
⌫̄e + p ) n+ e+. The heating rate falls o↵ with the geometric factor 1/r2

due to the corresponding fall in neutrino luminosity. Cooling in the inner
regions is contributed by the reactions like p+ e� ) ⌫e +n and n+ e+ )
⌫̄e+p whose energy deposition rate goes like T 6. This T 6 dependence can
be understood by recalling that the corresponding cooling rate should go
like q̇eN ⇠ �nEavg, where � is the neutrino-nucleus reaction cross-section,
n is the number density of nucleons and Eavg is the average energy. Now,
� ⇠ G2

FE
2, E ⇠ kBT , n / T 3 and Eavg / T , putting all these ingredients

together one can see that q̇eN / T 6. Cooling can also occur through
annihilation of electron-positron pairs into ⌫e⌫̄e, ⌫µ⌫̄µ and ⌫⌧ ⌫̄⌧ whose
rate behaves like T 9/⇢. The T 9 can be similarly understood by the fact
that now one has two number densities in the rate calculation in the form
ne+ne� , giving rise to an additional T 3 factor, leading to a T 9 dependence.
The relative importance of the cooling processes can be gauged by the ratio
q̇e+e�/q̇eN ⇡ S/80. For small entropies during early times, q̇eN turns out
to be larger by a modest factor than q̇e+e� . But, as we reach entropies of
order 70-80, the two cooling rates becomes comparable. The temperature
of the starting point is set by the fact that the outflow velocity is very
low near the surface, so equilibrium is maintained between heating and
cooling terms. We call this the gain radius and assume that the surface
where heating and cooling terms balance each other is approximately equal
to the surface of the neutron star.

3 Solution of the equations

• Eq. (18) represents a system of 3 non-linear first order di↵erential equa-
tions.

• A non-zero q̇ is the source of generating entropy in the inner regions (within
⇠ 100 km) of the system.

• This problem can be seen as a boundary value problem where one can
specify three boundary conditions (Ti, Si, vi or T, ⇢i, ⇢f ) and solve for the
equations.
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Introducing entropy per nucleon S ⌘ 4aT 3/3nN , we can rewrite this as

v2s =
TS

3mN
. (7)

The quantity S has the advantage of being conserved in the absence of
neutrino heating or cooling. Indeed, both radiation entropy density and
matter density scale the same way in this case as the material in the
outflow expands.

Let us now consider Eq. (1), first under the assumption of negligible en-
tropy deposition. The pressure gradient driving the acceleration of the
flow can be rewritten as

dP

dr
=

dP

d⇢

d⇢

dr
= v2s

d⇢

dr
. (8)

Here we used the condition that the derivative dP/d⇢ is taken at constant
entropy, which by definition gives the sound speed. For the second factor,
we use mass conservation, Eq. (2): d⇢/dr = �(⇢/r2v)d(r2v)/dr. This
gives two terms

dP

dr
= �v2s

✓
2⇢

r
+

⇢

v

dv

dr

◆
. (9)

With this, Eq. (1) takes the form
✓
v � v2s

v

◆
dv

dr
=

2v2s
r

� GM

r2
. (10)

We now see that the flow equation has rather remarkable properties. For
example, if the flow is subsonic, v < vs, at su�ciently large radii where
gravity is weak the flow will decelerate. To have an accelerating flow,
gravity has to be su�ciently strong, 2v2s < GM/r. This seemingly counter-
intuitive result arises because gravity sets up su�ciently steep pressure
gradients necessary for acceleration. We will return to this behavior later.

Inclusion of finite entropy generation is quite straightforward. Once again,
we need to evaluate the derivative dP/dr, but now we have to consider
the full entropy flow equation:

dP

dr
=

1

3

d(aT 4)

dr
=

1

3

 
Q̇

4⇡r2v
+

4aT 4

3

1

⇢

d⇢

dr

!
(11)

Here we used Eq. (4). We recognize the second term the expression as
v2sd⇢/dr we used before (cf. Eq. (6)); the first term provides the desired
e↵ect of the changing entropy. Repeating the steps leading to Eq. (1) and
introducing

q̇ ⌘ Q̇

4⇡r2⇢
, (12)
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⇢f (which is an observable) and solve for equation (10). Then this family
of curves becomes a look up table. Mass outflow rates are controlled by
densities at large radii. Larger densities will give lower mass outflow rates
because the outflow needs to push through larger amount of material.

Consider eq. (10) again. It can be rewritten as:

dv

dr
=

v

r

2v2s �GM/r

v2 � v2s
(20)

• For small initial velocities (vi), the solution always remains subsonic. Near
the neutron star surface, v << vs and �GM

r term dominates in Eq. (20),
so initially v increases. For small initial velocities, the ejecta moves slowly
and it has more time to gain energy from the medium. So, the velocity
increases slowly. The numerator of Eq. (20) can become 0 sooner than v
reaches vs. As this happens, velocity reaches its peak and dv

dr = 0. When
this happens, GM

r = 2v2s . After velocity reaches its peak, the numerator
of Eq. (20) becomes positive. In other words, after a certain radius, GM

r
terms fall su�ciently such that the dominant term is 2v2s . The velocity
therefore decreases afterwards. This deceleration is caused by a non-zero
density at large radius. This solution is therefore not described by an
outflow expanding into empty space. This outflow will run into a medium
of finite density, a condition that is indeed physically relevant to certain
situations in a supernova as we will see later.

• Eq. (20) isn’t a proper first order di↵erential equation that can be solved
on its own because vs is a variable here. It can be rewritten in a form
that makes it a proper first-order di↵erential eqn. by using the fact that

I = v2

2 + 3v2s � GM
r which implies v2s =

I� v2

2 +GM
r

3 . Using this, Eq. (20)
can be rearranged as :

dv

dr
=

v

r

⇣
2I
3 � v2

3 � GM
3r

⌘

�
� I

3 + 7v2

6 � GM
3r

� (21)

• Viewed in the form of Eq. (21) now becomes a first order non-linear dif-
ferential equation. This equation can be solved on its own if once specifies
the starting conditions of initial velocity (vi), initial temperature (Ti) and
initial entropy (Si) at some starting radius R where q̇ has dropped down
to 0. This equation will be solved starting with a range of initial velocities
and obtaining the corresponding final densities in all the discussions to
follow.

• From Eq. (18) and Eq. (21), one can see that the velocity of the outflow will
accelerate initially when the gravity term GM

r dominates. This counter-
intuitive thing happens because the dominant gravity term establishes a
higher pressure gradient that enables acceleration. After reaching the peak
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Boundary value problem 

What is the right third boundary condition ?

!  at PNS radius !Ti, Si R

❖ Historically, various approaches used.

❖ T = 0.1 MeV at R = 10,000 km (Qian & Woosley 1996, Otsuki 2001)

❖ Boundary condition at the sonic point itself. (Thompson 2001)

❖ !  as inner boundary condition. (Wanajo 2001)

❖ Confusing literature…

❖ We propose using far density !  as the third boundary. 

·M

ρf
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❖ Below a certain !  , no subsonic 
solutions exist !

❖ After this point, the curve 
directly goes to supersonic

❖ The corresponding far end 
density   is the minimum 
density that can be achieved by a 
breeze solution

❖ We call this the critical density 
!

ρf

ρf

ρcrit

Criticality !
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Criticality 
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System has a saddle point !

⇢f (which is an observable) and solve for equation (10). Then this family
of curves becomes a look up table. Mass outflow rates are controlled by
densities at large radii. Larger densities will give lower mass outflow rates
because the outflow needs to push through larger amount of material.

Consider eq. (10) again. It can be rewritten as:
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2v2s �GM/r

v2 � v2s
(20)

• For small initial velocities (vi), the solution always remains subsonic. Near
the neutron star surface, v << vs and �GM

r term dominates in Eq. (20),
so initially v increases. For small initial velocities, the ejecta moves slowly
and it has more time to gain energy from the medium. So, the velocity
increases slowly. The numerator of Eq. (20) can become 0 sooner than v
reaches vs. As this happens, velocity reaches its peak and dv

dr = 0. When
this happens, GM

r = 2v2s . After velocity reaches its peak, the numerator
of Eq. (20) becomes positive. In other words, after a certain radius, GM

r
terms fall su�ciently such that the dominant term is 2v2s . The velocity
therefore decreases afterwards. This deceleration is caused by a non-zero
density at large radius. This solution is therefore not described by an
outflow expanding into empty space. This outflow will run into a medium
of finite density, a condition that is indeed physically relevant to certain
situations in a supernova as we will see later.

• Eq. (20) isn’t a proper first order di↵erential equation that can be solved
on its own because vs is a variable here. It can be rewritten in a form
that makes it a proper first-order di↵erential eqn. by using the fact that

I = v2

2 + 3v2s � GM
r which implies v2s =

I� v2

2 +GM
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3 . Using this, Eq. (20)
can be rearranged as :
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3 + 7v2
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• Viewed in the form of Eq. (21) now becomes a first order non-linear dif-
ferential equation. This equation can be solved on its own if once specifies
the starting conditions of initial velocity (vi), initial temperature (Ti) and
initial entropy (Si) at some starting radius R where q̇ has dropped down
to 0. This equation will be solved starting with a range of initial velocities
and obtaining the corresponding final densities in all the discussions to
follow.

• From Eq. (18) and Eq. (21), one can see that the velocity of the outflow will
accelerate initially when the gravity term GM

r dominates. This counter-
intuitive thing happens because the dominant gravity term establishes a
higher pressure gradient that enables acceleration. After reaching the peak
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For a given final density ! , there exists critical values of 
the basic parameters like Luminosity ( ! ), average energy 
( ! ), radius ( ! ) and mass of the protoneutron star 
( ! )

ρf
Lν

ϵavg,ν R
MPNS

Critical parameters
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Critical curves

Critical Luminosity curve for reaching subsonic to supersonic transition point

❖ For L ∼ 1052 erg/s, final densities of at least 104 gm/cm3 needed

❖ Lcrit ∝ (⍴final )0.4
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Approximate scaling law for critical density
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⍴crit  ∝ L2.69 R0.9 E5.1 M-4 

Friedland and Mukhopadhyay (in prep)

Similar critical curves exist for average energy (E) and 
radius of the protoneutron star. Numerically, then one 
obtains a scaling law for the critical density in terms of the 
basic governing parameters :
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Practical applications
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❖ Presence or absence of termination shocks directly 
impact MSW flavor transformations !

❖ Direct impact on observable neutrino signals !

❖ Essential for understanding nucleosynthesis ?
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Thank you !


