Long - lived heavy neutrino searches at the colliders

Arindam Das Osaka University

PHENO 2020
4th May 2020, University of Pittsburgh, USA

Introduction

Standard Model

very stable

1. Neutrino mass and flavor mixing

2. Dark Matter candidate

3. May be more

New physics is strongly suggested

Theoretical
We definitely need new physics to provide missing pieces

Particle content of the model

Neutrino sector

Properties of the model and phenomenology
New particles $\quad Z^{\prime}$ boson
Heavy Majorana Neutrino
$U(1)_{X}$ Higgs boson
Phenomenology Z^{\prime} boson production and decay
Z^{\prime} boson mediated processes
Heavy neutrino production
$U(1)_{X}$ Higgs phenoemenology : Vacuum Stability collider
Dark Matter
Leptogenesis and many more

We focus on the Z^{\prime} boson and heavy neutrino phenomenology

Bounds on the $U(1)_{X}$ gauge coupling

ATLAS: 1903.06248 (139/fb)

CMS (36/fb) and ATLAS (139/fb) searches at the LHC Run-1 and Run-2 respectively

ATLAS-TDR-027 (prospective)

The branching ratios of Z^{\prime} boson as a function of x_{H} with a fixed $\mathrm{M}_{\mathrm{Z}^{\prime}}=3.0 \mathrm{TeV}$

Top \rightarrow bottom : Solid (Red, Black, Blue)

Up and down quarks
Heavy neutrinos

Pair Production of the RHNs as function of x_{H}

$$
\mathrm{M}_{\mathrm{N}_{1}}=500 \mathrm{GeV}, \mathrm{M}_{\mathrm{N}_{2}}=1 \mathrm{TeV}, \mathrm{M}_{\mathrm{N}_{3}}=2 \mathrm{TeV}
$$

The ratio of the partial decay widths of Z^{\prime} boson into RHNs and dilepton final states as a function of x_{H}

Right handed neutrino pair production

Generalizing the mixing parameter

Normal hierarchy

$$
\begin{aligned}
D^{\mathrm{NH}}=\operatorname{diag}\left(m_{\text {lightest }}, m_{2}^{\mathrm{NH}}, m_{3}^{\mathrm{NH}}\right) \quad D^{\mathrm{IH}}=\operatorname{diag}\left(m_{1}^{\mathrm{IH}}, r\right. \\
m_{2}^{\mathrm{NH}}=\sqrt{\Delta m_{12}^{2}+m_{\text {lightest }}^{2}} \\
m_{3}^{\mathrm{NH}}=\sqrt{\Delta m_{23}^{2}+\left(m_{2}^{\mathrm{NH}}\right)^{2}} \\
m_{N}=\operatorname{diag}\left(m_{N_{1}}, m_{N_{2}}, m_{N_{3}}\right)
\end{aligned}
$$

Decay length of RHNs neutrinos as a function of lightest active neutrino mass

1906.04132

Fitting Neutrino oscillation data

$$
\Gamma_{N_{i}}^{\mathrm{NH} / \mathrm{IH}}=\sum_{\alpha=e, \mu, \tau}\left[\Gamma\left(N_{i} \rightarrow \ell_{\alpha} W\right)^{\mathrm{NH} / \mathrm{IH}}+\Gamma\left(N_{i} \rightarrow \nu_{\alpha} Z\right)^{\mathrm{NH} / \mathrm{IH}}+\Gamma\left(N_{i} \rightarrow \nu_{\alpha} h\right)^{\mathrm{NH} / \mathrm{IH}}\right]
$$

$$
\mathrm{M}_{\mathrm{N}_{1}}=500 \mathrm{GeV} \quad \mathrm{M}_{\mathrm{N}_{2}}=1 \mathrm{TeV} \quad \mathrm{M}_{\mathrm{N}_{3}}=2 \mathrm{TeV}
$$

CMS - 2DV

Trigger	$H_{T}>1000 \mathrm{GeV}$
Jet selection	At least 4 jets with $p_{T}>20 \mathrm{GeV}$ and $\|\eta\|<2.5$
DV region	2 DVs within $0.1 \mathrm{~mm}<r_{D V}<20 \mathrm{~mm}$ and $d_{V V}>0.4 \mathrm{~mm}$
DV selection	Made from tracks with $\left\|d_{0}\right\| \geq 0.1 \mathrm{~mm}, p_{T}>20 \mathrm{GeV}$ and $\|\eta\|<2.5$.
	$\sum p_{T} \geq 350 \mathrm{GeV}$, correcting for b quarks.

1908.09838

CMS 2DV+jets strategy $\quad U(1)_{B-L}, g^{\prime}=0.8, m_{7^{\prime}}=6 \mathrm{TeV}$

Conclusions

We study a general scenario where the SM is extended by a general U(1) group which has three generations of the right handed neutrinos (RHNs) for the anomaly cancellations and they participate in the seesaw mechanism after the $\mathbf{U}(1)$ symmetry is broken.

These RHNs can be produced at the LHC from the heavy Z-prime resonance in pair directly. Such RHNs can be long lived. Considering the long livedness we have showed the dependence of the decay length as a function of the lightest neutrino mass eigenvalue.

We have also compared our analyses validating with the current CMS displaced vertex (DV) searches using two DVs. We have found that heavier RHN mass can probe a very small mixing through the DV signatures.

