Long – lived heavy neutrino searches at the colliders

Arindam Das Osaka University

PHENO 2020 4th May 2020, University of Pittsburgh, USA

We definitely need new physics to provide missing pieces

Particle content of the model

Neutrino sector

Properties of the model and phenomenology

New particles Z' boson Heavy Majorana Neutrino $U(1)_X$ Higgs boson

PhenomenologyZ' boson production and decay
Z' boson mediated processes
Heavy neutrino production
 $U(1)_X$ Higgs phenoemenology : Vacuum Stability
colliderDark Matter
Leptogenesis and many more

We focus on the Z' boson and heavy neutrino phenomenology

Bounds on the $U(1)_X$ gauge coupling

ATLAS: 1903.06248 (139/fb) $\sigma_{fid} \times B \; [fb]$ ATLAS 10 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $X \to \parallel$ 10- 10^{-2} Observed limit at $\Gamma/m = 10\%$ Expected limit at $\Gamma/m = 10\%$ – Z'_{SSM} model $\Gamma/m = 3\%$ **---** Γ/m = 0% Events / Bin 10⁹ 10⁸ 10⁷ 00 $Z'_{(5 \text{ TeV})} \rightarrow \text{ee}, \sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}, <\mu > = 200$ ATLAS Simulation $- Z/\gamma^* \rightarrow ||$ 10⁶ 10⁵ 10⁴ 10³ 10² 10 10- $70\,10^2$ 2×10² 10³ 2×10^{3} 10⁴ m., [GeV]

CMS (36/fb) and ATLAS (139/fb) searches at the LHC Run-1 and Run-2 respectively

ATLAS-TDR-027 (prospective)

The branching ratios of Z' boson as a function of x_H with a fixed $M_{Z'} = 3.0 \text{ TeV}$

Pair Production of the RHNs as function of x_H

The ratio of the partial decay widths of Z' boson into RHNs and dilepton final states as a function of x_H

Right handed neutrino pair production

1906.04132

 $M_{Z'} > 2M_N$ (at least)

$$Z' \to 2N$$

$$g_R^N[g_x, x_H] = \left(0 \ x_H + (-1)\right)g_x$$

$$\Gamma[Z' \to 2N_i] = \frac{M_{Z'}}{24\pi}g_R^N[g_x, x_H]^2(1 - 4\frac{M_{N_i}^2}{M_{Z'}^2})^{\frac{3}{2}}$$

$$\mathbf{M}_{\mathbf{N}} = \frac{Y_N^i}{\sqrt{2}} v_{\Phi}$$

Generalizing the mixing parameter

$$\mathcal{R}^{\text{NH/IH}} = U_{\text{PMNS}}^* \sqrt{D^{\text{NH/IH}}} O \sqrt{m_N^{-1}}$$
general orthogonal matrix
$$O = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos x & \sin x \\ 0 & -\sin x & \cos x \end{pmatrix} \begin{pmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{pmatrix} \begin{pmatrix} \cos z & \sin z & 0 \\ -\sin z & \cos z & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Normal hierarchy
Inverted hierarchy

ттт

Decay length of RHNs neutrinos as a function of lightest active neutrino mass

 $M_{N_1} = 500 \text{ GeV}$ $M_{N_2} = 1 \text{ TeV}$ $M_{N_3} = 2 \text{ TeV}$

CMS - 2DV

Trigger	$H_T > 1000 \text{ GeV}$	1000 00020
Jet selection	At least 4 jets with $p_T > 20$ GeV and $ \eta < 2.5$	1908.09838
DV region	2 DVs within 0.1 mm $< r_{DV} < 20$ mm and $d_{VV} > 0.4$ mm	
DV selection	Made from tracks with $ d_0 \ge 0.1$ mm, $p_T > 20$ GeV and $ \eta < 2.5$.	
	$\sum p_T \ge 350 \text{ GeV}$, correcting for <i>b</i> quarks.	

 $U(1)_{B-L}, g' = 0.8, m_{Z'} = 6 \text{ TeV}$

Conclusions

We study a general scenario where the SM is extended by a general U(1) group which has three generations of the right handed neutrinos (RHNs) for the anomaly cancellations and they participate in the seesaw mechanism after the U(1) symmetry is broken.

These RHNs can be produced at the LHC from the heavy Z-prime resonance in pair directly. Such RHNs can be long lived. Considering the long livedness we have showed the dependence of the decay length as a function of the lightest neutrino mass eigenvalue.

We have also compared our analyses validating with the current CMS displaced vertex (DV) searches using two DVs. We have found that heavier RHN mass can probe a very small mixing through the DV signatures.

Thank you very much