Next Generation Dark Matter Models

Linda Carpenter Ohio State University

DM Landscape

Effective operators

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5 q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
$\mathbf{D7}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Obfuscates Mediating sector, replaced with general scale

Captures kinematics of coupling to standard model

Limited range of validity

EFT breaks down at high momentum transfer

Truncation proceedure removes events with momentum transfer>M*

ATLAS (arXiv:1411.1559v2)

Simplified Models

- Chooses a mediating mechanism
- Considers limited number of interactions
- Issue with arbitrarity and theoretical consistancy (unitarity, gauge invariance)
- Not every simplified model can be realized in UV completion

Next Generation Models

- Theoretically consistent extension of a simplified model
- Generic enough to be used in the context of broader, more complete theoretical frameworks
- Varied phenomenology to encourage comparison of different experimental signals and to search for DM in new, unexplored channels
- Be of interest beyond the DM community, to the point that other direct and indirect constraints can be identified.

Pseudoscalar Mediator

Simplified Model

$$\mathcal{L}_{\text{DM-simp}} = -ig_{\chi}a\bar{\chi}\gamma_5\chi - ia\sum_j \left(g_u y_j^u \bar{u}_j\gamma_5 u_j + g_d y_j^d \bar{d}_j\gamma_5 d_j + g_\ell y_j^\ell \bar{\ell}_j\gamma_5\ell_j\right)$$

Violates gauge invariance!

Remove arbitrarity by selecting BSM scenario that naturally contains the mediating particle. Fix gauge invariance by requiring propser quantum numbers in meditor sector

2HDM containing 2 complex doublet fields H_1 and H_2 plus new pseudoscalar P,yielding 6 fields h, H, H^{+-,}A, a

DM coupling to pseudoscalar

 $\mathcal{L}_{\chi} = -iy_{\chi}P\bar{\chi}\gamma_5\chi$

Pseudoscalar mixing with SM

$$V_{HP} = P\left(ib_{P}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + P^{2}\left(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}\right)$$

Higgs coupling to SM

$$\mathcal{L}_Y = -\sum_{i=1,2} \left(\bar{Q} Y_u^i \tilde{H}_i u_R + \bar{Q} Y_d^i H_i d_R + \bar{L} Y_\ell^i H_i \ell_R + \text{h.c.} \right)$$

Consequences of Next Generation Models for DM coupling and Indirect detection

- -Multiple coupling between DM and the SM
- -Complex DM annihilation spectrum
- -Multibody kinematics
- -Extremely variable Relic Density

DM couplings to SM and BSM states

BSM states in the extended Higgs sector

Indirect Detection Constraints

Dark Matter Annihilation channels through pseudoscalar

R_x annihilation fraction

DM couplings to SM and Mediator states

3 final state cascade

Cascades shift spectrum

Slatyer group PhysRevD.91.103531

2^N Cascade

Relic Density Calculation

Conclusions

Next Generation Models require more complexity in the mediator sector

- Consequences for ID and DD detection are manifold
- Great multiplicity of DM couplings to SM particles
- DM annihilation process becomes complex, multiple final states and cascade decays
- Extreme variation in Relic Density calculation