Master Integrals for the mixed EW-QCD corrections to the Drell-Yan production of a massive lepton pair

Pheno 2020

Syed Mehedi Hasan (INFN, Sezione di Pavia)

In collaboration with

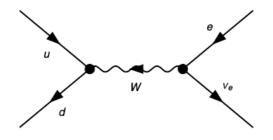
Ulrich Schubert (University at Buffalo)

based on: arXiv:2004.14908

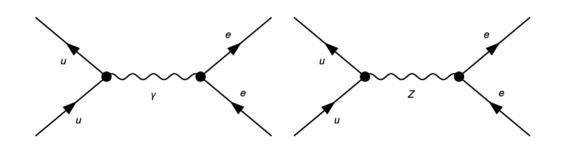
May 4-6, 2020

Research supported by the National Science Foundation under grant no. PHY-1719690 and PHY-1652066

Email: syedmehe@pv.infn.it

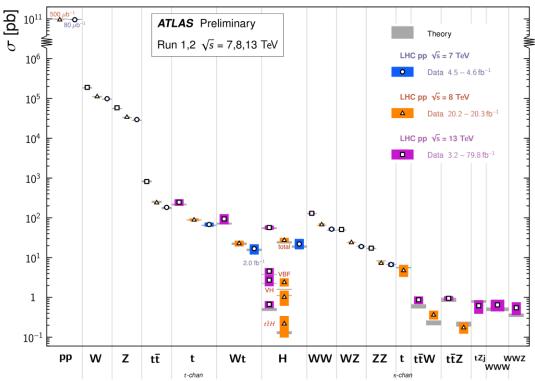

University at Buffalo The State University of New York

Outline

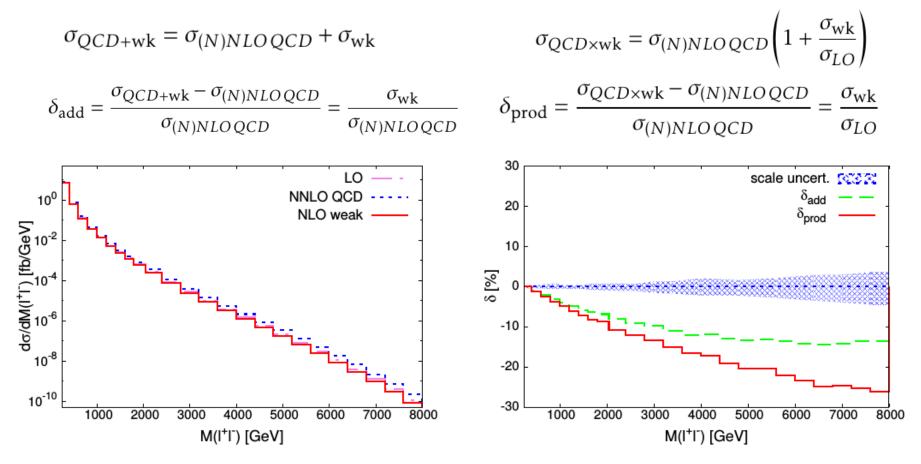

- Motivation
- Mixed QCD-EW corrections
- Method
- Outlook

W and Z production at the LHC via Drell-Yan Processes

Charged Current

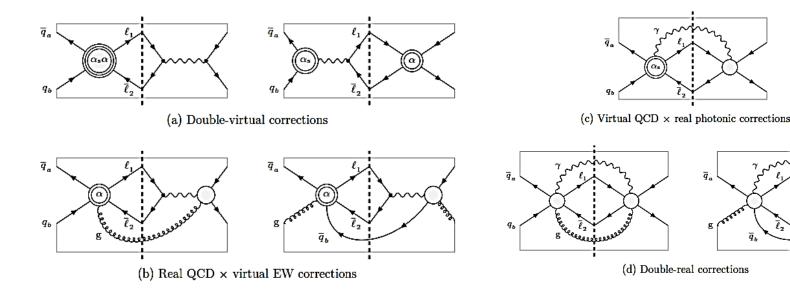

T1 C1 N1

T1 C2 N2


W and Z production at the LHC

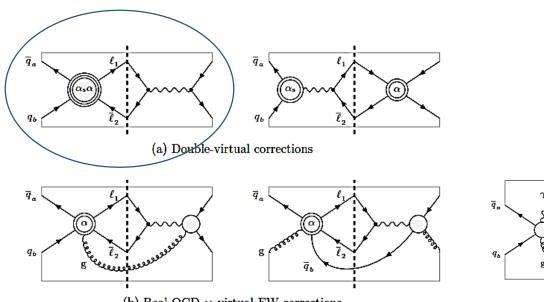
Standard Model Total Production Cross Section Measurements Status: November 2019

- Big cross section and clean experimental signature.
- W boson mass and $sin^2 \theta_{eff}^l$ determination.
- New physics search, eg. W' and Z' resonances.
- Constraining PDF, detector calibration and determination of collider luminosity.


Mixed QCD-EW correction enhancement at higher energy

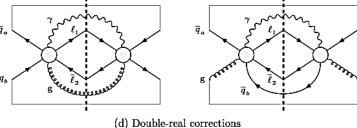
[Campbell, Wackeroth, Zhou, 2016]

Structure of the fixed order prediction

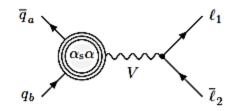

 $d\sigma = d\sigma_{LO} + \alpha d\sigma_{\alpha} + \alpha^2 d\sigma_{\alpha^2} + \ldots + \alpha_s d\sigma_{\alpha_s} + \alpha_s^2 d\sigma_{\alpha_s^2} + \ldots + \alpha \alpha_s d\sigma_{\alpha\alpha_s} + \alpha \alpha_s^2 d\sigma_{\alpha\alpha_s^2} + \ldots$


[Alexander Huss '14]

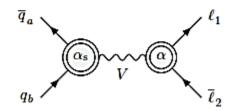
Structure of the fixed order prediction


 $d\sigma = d\sigma_{LO} + \alpha d\sigma_{\alpha} + \alpha^2 d\sigma_{\alpha^2} + \ldots + \alpha_s d\sigma_{\alpha_s} + \alpha_s^2 d\sigma_{\alpha_s^2} + \ldots + \alpha \alpha_s d\sigma_{\alpha\alpha_s} + \alpha \alpha_s^2 d\sigma_{\alpha\alpha_s^2} + \ldots$

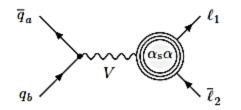
(b) Real QCD \times virtual EW corrections

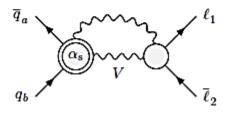


(c) Virtual QCD × real photonic corrections

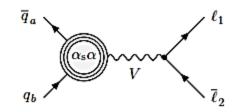


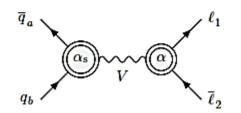
[Alexander Huss '14]


Born interfered double virtual corrections at $O(\alpha \alpha_s)$

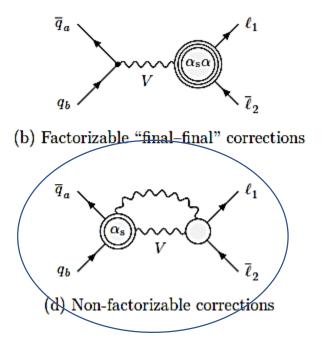

(a) Factorizable "initial-initial" corrections

(c) Factorizable "initial-final" corrections

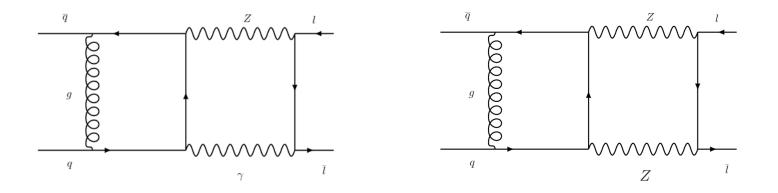

(b) Factorizable "final-final" corrections


(d) Non-factorizable corrections

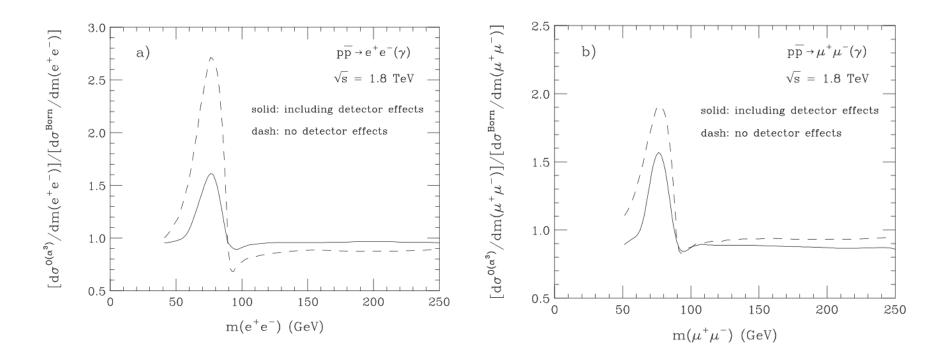
[Alexander Huss '14]


Born interfered double virtual corrections at $O(\alpha \alpha_s)$

(a) Factorizable "initial-initial" corrections



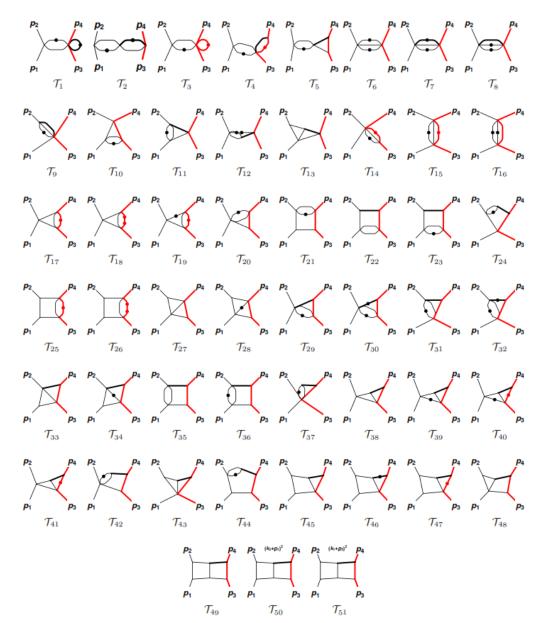
(c) Factorizable "initial-final" corrections


[Alexander Huss '14]

Example Feynman diagrams for non factorizable double virtual correction at $O(\alpha \alpha_s)$ to DY process

-> All the ingredients, i.e. Master Integrals, for the process $q\bar{q} \rightarrow l^+l^-$ and $q\bar{q}' \rightarrow l\bar{\nu}$ are calculated in the massless final state approximation.

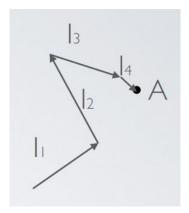
[Bonciani, Di Vita, Mastrolia, Schubert, 2016] [Manteuffel, Schabinger, 2017] [Heller, Manteuffel, Schabinger, 2019]



detector effects require control over the inclusiveness

-> It is necessary to keep lepton mass up to logarithmic term

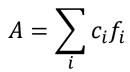
[Baur, Keller, Sakumuto, 1997]


MIs for the NC DY process in case of single massive gauge boson exchange

14

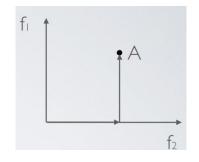
-> Amplitude given by Feynman diagrams

$$A = \sum_i a_i I_i$$


-> Amplitude given by Feynman diagrams

$$A=\sum_i a_i I_i$$

I3 I2 I2 A

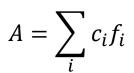

-> Project onto basis using Integration by Parts identities

(Tkachov; Chetyrkin, Tkachov)

Implemented in public codes

REDUZE(Studerus, von Manteuffel)Fire(Smirnov)Air(Anastasiou, Lazopolus)Kira(Maierhoefer, Usovitsch, Uwer)

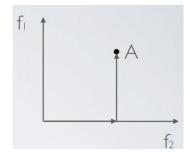
-> Amplitude given by Feynman diagrams


$$A=\sum_i a_i I_i$$

A I

3

-> Project onto basis using Integration by Parts identities


(Tkachov; Chetyrkin, Tkachov)

Implemented in public codes

REDUZE(Studerus, von Manteuffel)Fire(Smirnov)Air(Anastasiou, Lazopolus)Kira(Maierhoefer, Usovitsch, Uwer)

Differential Equation

Method

-> Kinematic derivative in space spanned by MIs

$$\partial_x \bar{f} = A_x \bar{f}$$

Differential Equation

-> Kinematic derivative in space spanned by MIs

$$\partial_x \bar{f} = A_x \bar{f}$$

-> Conjecture: There is a basis such that:

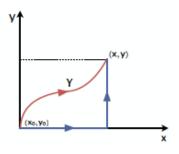
$$\partial_x \bar{g} = \epsilon \tilde{A}_x \bar{g}$$

(Henn)

->There are many strategies to get the epsilon factorized form

- Magnus Theorem
- Unit leading Singularity
- Reduction to fuchsian form and Eigenvalue normalization
- Factorization of Picard-Fuchs operator

(Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, US) (Henn) (Lee, Smirnov) (Adams, Chaubey, Weinzierl)


Solving Canonical Differential Equation

Canonical form

$$\partial_x \vec{g}(x,\epsilon) = \epsilon \tilde{A}_x(x) \vec{g}(x,\epsilon) \qquad \qquad d\vec{g}(x,\epsilon) = \epsilon \sum_i M_i dlog(\eta_i) \vec{g}(x,\epsilon)$$

- Kinematic dependence encoded in η
- η's form the alphabet

Solution given by $\vec{g}(x,\epsilon) = \left[1 + \sum_{i=1}^{\infty} \int_{\gamma} dA \dots dA\right] \vec{g}(x_0,\epsilon)$

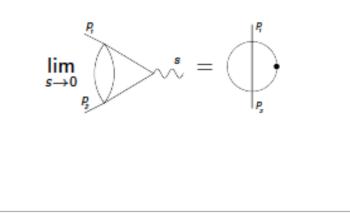
Algebraic ηs : Chen Iterated Integrals (Chen)

$$C(\eta_n \vec{x}) = \int_{\gamma} dlog(\eta_1) \dots dlog(\eta_n)$$

Rational ηs : Generalized Polylogarithms (Goncharov)

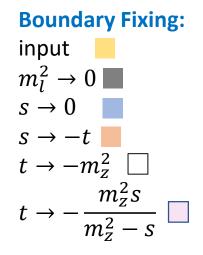
$$egin{aligned} G(ec{0}_n;x) &= rac{1}{n!}Log(x)^n \ G(ec{w}_n;x) &= \int_0^x rac{dt}{t-w_1}G(ec{w}_{n-1};t) \end{aligned}$$

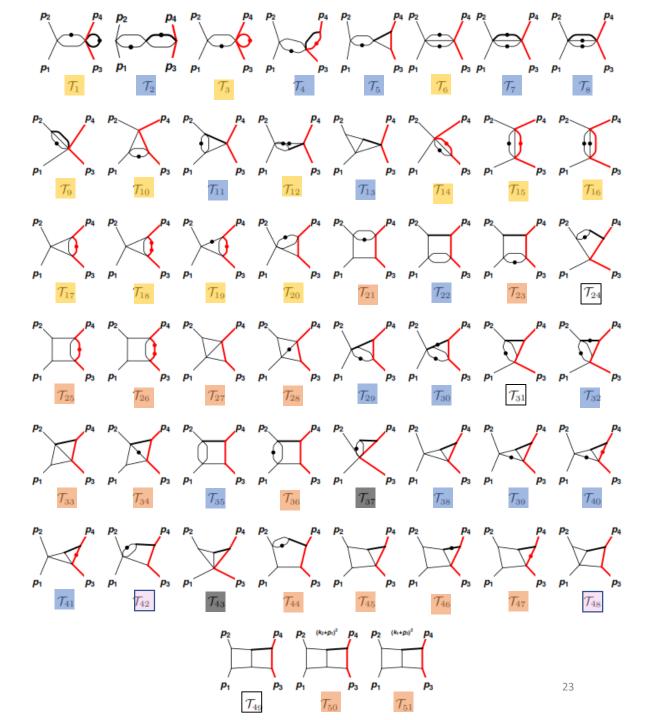
Boundary Conditions


-> Solution given by

$$ec{g}(x,\epsilon) = \left[1 + \sum_{i=1}^\infty \int_\gamma dA \dots dA
ight] ec{g}(x_0,\epsilon)$$

-> Two general ways to fix the boundary


Known Limit


- Taking the limit x to x0
- Fix boundary constant by matching the solution to known function

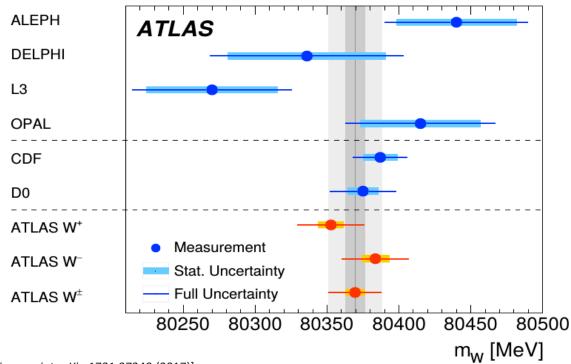
Pseudo-thresholds

- Solution has unphysical divergences
- Demanding absence of unphysical divergences gives relations between boundary constant
- · Leftover constants must be provided

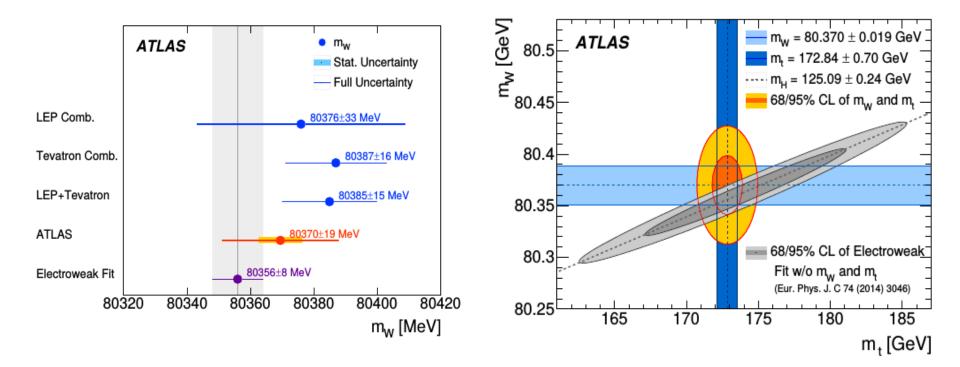
Outlook

- The newly calculated master integrals can be of interest to study the logarithmic structure of the lepton mass in the amplitude.
- With our available ingredients, the amplitude can be written in terms of GPLs which is easy to incorporate into Monte Carlo to simulate differential distributions.

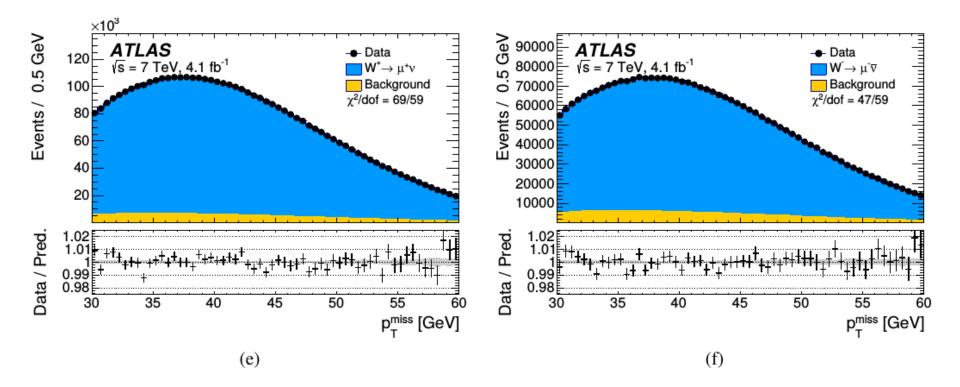
• Thank You


Available fixed order calculations for W and Z production

- NLO QED and QCD corrections. (known for a long time)
- NLO EW corrections. [Wackeroth et al '97,'98,'04],[Baur et al '98,'02,'04],[Dittmaier et al '02,'10]
- NNLO QCD and QED corrections [Hamberg et al '91],[Anastasiou et al '03,'04],[Melnikov,Petriello '06],[Stefano et al '07]
- NNLO Mixed QCD-EW corrections to decay of W & Z boson. [Kuhn et al '96],[Kara '13]
- NNLO Mixed QCD-EW corrections to Z production form factors [Kotikov et al '08]
- NNLO QCD-QED virtual corrections to lepton pair production. [Kilgore et al '12]
- NNLO Mixed QCD-EW virtual corrections to DY production of W and Z bosons [Bonciani '11]
- Double real contribution to total cross section for on-shell single gauge boson production. [Bonciani et al 2016]
- NNLO Mixed QCD-EW corrections adopting pole approximation. [Dittmaier, Huss, Schwinn '14,'16]
- QCD×QED [O($\alpha \alpha_s$)] mixed and QED2 [O(α^2)] corrections to the production of an on-shell Z boson [Florian, Ignacio 2018]
- NNLO QCD×EW corrections to Z production in the qq⁻ channel [Bonciani et al '2019]
- To do : Complete NNLO Mixed QCD-EW corrections for W and Z production in a fully flexible Monte Carlo program.


ATLAS Report on W mass (January 2017)

Currently at the LHC M_W is extracted from M_T and P_T of the $l\nu$ in W boson production.


$$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$$

- 80370 ± 19 MeV

ATLAS Report on W mass

Missing transverse momenta distribution

30

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line	w/o exp. input in line, no theo. unc
$M_H \; [\text{GeV}]^{(\circ)}$	125.14 ± 0.24	yes	125.14 ± 0.24	93^{+25}_{-21}	93^{+24}_{-20}
M_W [GeV]	80.385 ± 0.015	_	80.364 ± 0.007	80.358 ± 0.008	80.358 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	_	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011	91.2000 ± 0.010
$\Gamma_Z [{\rm GeV}]$	2.4952 ± 0.0023	_	2.4950 ± 0.0014	2.4946 ± 0.0016	2.4945 ± 0.0016
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.484 ± 0.015	41.475 ± 0.016	41.474 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.743 ± 0.017	20.722 ± 0.026	20.721 ± 0.026
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01626 ± 0.0001	0.01625 ± 0.0001	0.01625 ± 0.0001
$A_\ell (\star)$	0.1499 ± 0.0018	_	0.1472 ± 0.0005	0.1472 ± 0.0005	0.1472 ± 0.0004
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23150 ± 0.00006	0.23149 ± 0.00007	0.23150 ± 0.00005
A_c	0.670 ± 0.027	_	0.6680 ± 0.00022	0.6680 ± 0.00022	0.6680 ± 0.00016
A_b	0.923 ± 0.020	_	0.93463 ± 0.00004	0.93463 ± 0.00004	0.93463 ± 0.00003
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	0.0738 ± 0.0003	0.0738 ± 0.0003	0.0738 ± 0.0002
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	_	0.1032 ± 0.0004	0.1034 ± 0.0004	0.1033 ± 0.0003
R_c^0	0.1721 ± 0.0030	_	$0.17226^{+0.00009}_{-0.00008}$	0.17226 ± 0.00008	0.17226 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00011	0.21577 ± 0.00011	0.21577 ± 0.00004
$\overline{m}_c [{\rm GeV}]$	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	_	_
$\overline{m}_b [{\rm GeV}]$	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	_	_
$m_t [{ m GeV}]$	173.34 ± 0.76	yes	$173.81 \pm 0.85^{(\bigtriangledown)}$	$177.0^{+2.3}_{-2.4}$	177.0 ± 2.3
$\Delta \alpha_{\rm had}^{(5)} (M_Z^2)^{(\dagger \triangle)}$	2757 ± 10	yes	2756 ± 10	2723 ± 44	2722 ± 42
$\alpha_s(M_Z^2)$	_	yes	0.1196 ± 0.0030	0.1196 ± 0.0030	0.1196 ± 0.0028

31