UV and IR freeze-in production of fermionic dark matter and its possible X-ray signature

Sougata Ganguly tpsg4@iacs.res.in

With Anirban Biswas, Sourov Roy Based on JCAP03(2020)043 (arXiv : 1907.07973)

School of Physical Sciences

Indian Association for the Cultivation of Science, Kolkata, India

Pheno2020, University of Pittsburgh May 5, 2020

Motivation for FIMP

Experimental observation

 Direct detection experiments LUX, PANDA, XENON put a strong bound on DM-nucleon scattering cross-section.

Shortcoming

- Mostly studied WIMP scenario can not explain the results of direct detection experiments.
- Need to go beyond WIMP paradigm.

Proposal

- DM production via freeze-in is a well motivated scenario because
 - ✓ It can explain the null results of direct detection experiment due to its feeble coupling with visible sector.
 - ✓ Can be probed via indirect detection.

UV freeze-in

Arises due to the presence of higher dimensional operator $\left(\frac{\mathcal{O}^d}{\Lambda^{d-4}}\right)$ and relic density depends on the early state of the universe such as reheat temperature.

F.Elahi et. al. JHEP03(2015)048

IR freeze-in

Arises due to the presence of renormalizable operator and the contribution to the relic density coming from IR freeze-in is independent of early state of universe and it depends on the mass of bath particles.

L.J.Hall et. al. JHEP03(2010)080

Extension

- A Dirac fermion χ , singlet under SM-gauge group.
- A pseudo scalar $\tilde{\phi}$, singlet under SM-gauge group.

Stability of DM

- χ is odd under \mathbb{Z}_2 .
 - $\sqrt{y L \Phi \chi}$ is forbidden \implies DM interacts with the visible sector via dimension five operators \implies Natural suppression in coupling.
- $\tilde{\phi}$ and all SM fields are even under \mathbb{Z}_2 .
 - ✓ After electroweak symmetry breaking, $\langle \Phi \rangle \neq 0$ and \mathbb{Z}_2 symmetry remains unbroken and it ensures the stability of DM.

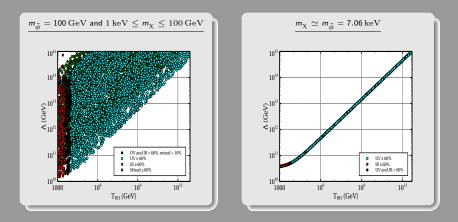
Interactions for UV freeze-in

$$\begin{split} \mathcal{L}_{UV} & \supset \quad -\frac{\overline{\chi}\chi\Phi^{\dagger}\Phi}{\Lambda} - \frac{\epsilon^{\mu\nu\alpha\beta}\left(\partial_{\mu}B_{\nu}\right)\left(\partial_{\alpha}B_{\beta}\right)\tilde{\phi}}{\Lambda} - \frac{\epsilon^{\mu\nu\alpha\beta}\left(\partial_{\mu}W_{\nu}^{a}\right)\left(\partial_{\alpha}W_{\beta}^{a}\right)\tilde{\phi}}{\Lambda} \\ & - \quad \frac{\epsilon^{\mu\nu\alpha\beta}\left(\partial_{\mu}G_{\nu}^{b}\right)\left(\partial_{\alpha}G_{\beta}^{b}\right)\tilde{\phi}}{\Lambda} - g\,\bar{\chi}\gamma_{5}\chi\,\tilde{\phi} - \frac{i}{\Lambda}\left(y_{t}\,\overline{t}_{L}\gamma_{5}\,t_{R}\,\phi^{0*}\tilde{\phi} + h.c\right) \; . \end{split}$$

Interactions for IR freeze-in

$$\mathcal{L}_{IR} \supset -\frac{\epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}W_{\nu}^{-}\right) \left(\partial_{\alpha}W_{\beta}^{+}\right) \tilde{\phi}}{\Lambda} - \frac{\epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}W_{\nu}^{+}\right) \left(\partial_{\alpha}W_{\beta}^{-}\right) \tilde{\phi}}{\Lambda} \\ - \frac{\epsilon^{\mu\nu\alpha\beta} (\partial_{\mu}A_{\nu}) (\partial_{\alpha}A_{\beta}) \tilde{\phi}}{\Lambda} - \frac{\epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}G_{\nu}^{b}\right) \left(\partial_{\alpha}G_{\beta}^{b}\right) \tilde{\phi}}{\Lambda} - \frac{\epsilon^{\mu\nu\alpha\beta} \left(\partial_{\mu}Z_{\nu}\right) \left(\partial_{\alpha}Z_{\beta}\right) \tilde{\phi}}{\Lambda} \\ - \frac{i}{\Lambda} m_{t} \bar{t} \gamma_{5} t \tilde{\phi} - \frac{v}{\Lambda} \bar{\chi} \chi h - \frac{1}{2\Lambda} \bar{\chi} \chi h^{2} - g \bar{\chi} \gamma_{5} \chi \tilde{\phi} .$$

Production channels of DM


Production through pure freeze-in

- In UV regime, $\phi_i^{\dagger}\phi_i \rightarrow \overline{\chi}\chi$ in the dominant production channel of DM production.
- After EWSB, DM can be produced dominantly from the annihilation of W^+W^- , ZZ, hh and also from the decay of h.

Production through mixed freeze-in

- $\tilde{\phi}$ can be dominantly produced from the top quark involving scattering in the UV regime due to presence of a dimension five operator $\frac{y_t}{\Lambda} \bar{t}_L \gamma_5 t_R \phi^{0*} \tilde{\phi}$.
- $\tilde{\phi}$ produced from the UV processes can decay into $\overline{\chi}\chi$ through a renormlizable operator $g\overline{\chi}\gamma_5\chi\tilde{\phi}$.

Parameter space in $T_{RH} - \Lambda$ plane for correct relic density

Indirect detection

Box shaped spectra

- We have considered the cascade annihilation process $\overline{\chi}\chi \to \tilde{\phi}\tilde{\phi} \to 4\gamma$.
- Since the decaying particle is a scalar so that the photon emission is isotropic and the photon spectrum looks like a box of width $\Delta E = E_{\gamma}^{max} E_{\gamma}^{min} = \sqrt{m_{\chi}^2 m_{\tilde{\chi}}^2}$.

A.Ibarra et.al JCAP07(2012)043

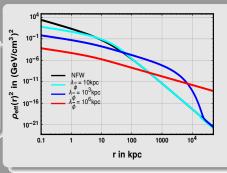
\textbf{m}_{χ} and $\textbf{m}_{\tilde{\delta}}$ must be degenerate for line spectrum.

Possible X-ray signature via \sim 3.5 keV X-ray line observed by XMM Newton telescope from the galactic centre

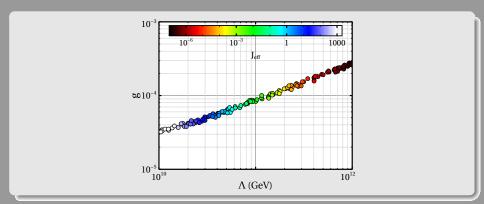
- We have considered $m_{\chi} \simeq m_{\tilde{\phi}} = 7.06 \, \text{keV}$ to explain the origin of $\sim 3.5 \, \text{keV}$ X-ray line from DM annihilation.
- $\tilde{\phi}$ is long lived because of its two photon coupling and the coupling is strongly constrained from various astrophysical observations.
- Long lived $\tilde{\phi}$ modifies the DM density profile.

Photon flux and effective J factor

• Differential photon flux is given by


$$rac{d\Phi_{\gamma}}{dE_{\gamma}} = 2 imes rac{1}{4} rac{r_{\odot}}{4\pi} \left(rac{
ho_{\odot}}{m_{\chi}}
ight)^2 \langle \sigma \mathrm{v_{rel}}
angle_{ar{\chi}\chi
ightarrow ilde{\phi} \phi} rac{dN_{\gamma}}{dE_{\gamma}} J_{\mathrm{eff}} \Delta \Omega \; ,$$

where

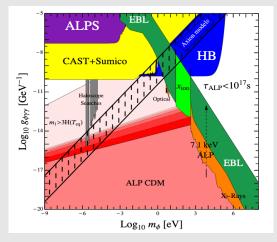

$$J_{
m eff} = rac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int rac{dx}{r_{\odot}} rac{
ho_{
m eff}^2(x)}{
ho_{\odot}^2} \, .$$

Long lifetime of $\tilde{\phi}$ modifies the dark matter density profile effectively,

$$\rho_{\rm eff}^2(x) = \int dV_{\vec{x_s}} \frac{\rho_{\chi}^2(\vec{x_s})}{4\pi\lambda_{\tilde{\phi}}} \frac{\exp\left(-\frac{|\vec{x}-\vec{x_s}|}{\lambda_{\tilde{\phi}}}\right)}{|\vec{x}-\vec{x_s}|^2}$$

$\Lambda - g$ plane for correct photon flux in 2σ range observed by XMM Newton telescope

• $10^{12} \,\mathrm{GeV} \leq \Lambda \leq 10^{17} \,\mathrm{GeV}$ is disfavoured from various astrophysical observations. J.Jaeckel et. al. Phys. Rev. D 89,103511(2014)


• Mean free path of $\tilde{\phi}$ increases with the increase in Λ . Therefore $J_{\rm eff}$ will decrease and to get the correct photon flux observed by XMM Newton telescope, g must increase with the increase in Λ .

Conclusions

- DM production via freeze-in is well motivated scenario which can explain the null results of direct detection experiments.
- We have found in our model that for the lower end of $T_{RH} \Lambda$ plane where $T_{RH} \lesssim 10^4$ GeV, DM is produced dominantly by IR and mixed freeze-in whereas for $T_{RH} > 10^4 \text{ GeV}$, DM is produced by UV and mixed freeze-in.
- Large lifetime of $\tilde{\phi}$ effectively modifies the DM density profile at galactic centre and that affects the calculation of photon flux.
- $\bar{\chi}\chi \rightarrow \tilde{\phi}\tilde{\phi} \rightarrow 4\gamma$ process can explain the ~3.5 keV X-ray anomaly, which was observed from galactic centre and we have identified the allowed parameter space in Λ -g plane which reproduces the observed flux by XMM Newton telescope.

Thank You.

Backup slide: Allowed $m_{\widetilde{\phi}} - \Lambda$ plane

J.Jaeckel et. al. Phys. Rev. D 89,103511(2014)