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Motivation and Review Results Summary

Outline

Central Question: Does a massless light axion EFT inherit
periodicity when axions mix?
I Motivation - Why consider models of axion mixing?
I Review of θ angles: Sθ = θ

32π2

∫
d4xFF̃

I θ is periodic
I Examples

I Mixing through a periodic potential
I Mixing with an axion eaten by a spin-1 field
I Mixing with a non-compact scalar
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Motivation
Why consider models of axion mixing?

I Hiearchies between couplings
I Experimental probes of the QCD

axion
I Large field ranges

I large primordial gravitational wave
signals

I relaxion models
I Difficult to achieve in string theory

I A combination of the two
I Preheating
I Suppress Axion DM abundance
I Chromonatural inflation

From 1602.00039
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Review: θ angles are periodic

I Periodic θ angles couple to gauge fields through
Sθ = θ

32π2

∫
d4xFF̃

I 1
32π2

∫
d4xFF̃ ∈ Z on general topological grounds

I Contribute to partition function as Z = eiSθ ⇒ Doesn’t
change when θ shifts by 2π

I For axion coupling Sθ(x) = k θ(x)
32π2

∫
d4xFF̃ , Z = eiSθ(x) only

remains unchanged for θ(x)→ θ(x) + 2π if k ∈ Z
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Central Question

Does a massless light axion EFT inherit
periodicity when axions mix?

Answer: Yes.∗
-Violations proportional to light axion mass since �aL ≈ −m2

LaL

-as in the π − γ case, the aFF̃ coupling isn’t quantized when
higher order terms in a periodic potential are relevant
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Example 1: Periodic Potential

L =
1

4e2 FF︸ ︷︷ ︸
Gauge

kinetic term

+Kij∂µθi∂
µθj︸ ︷︷ ︸

Axion
kinetic term

− V (j1θ1 + j2θ2)︸ ︷︷ ︸
Peroidic potential for

heavy axion θH

+
k1θ1 + k2θ2

32π2 FF̃︸ ︷︷ ︸
Axion Coupling

k1,k2∈Z

In the lattice basis, axions are periodic and couplings are
quantized:(
θ′L
θ′H

)
=

(
j1 j2
l1 l2

)
︸ ︷︷ ︸

GL(2,Z)

(
θ1
θ2

)
⇒ 1

32π2

(
(l2k1 − l1k2)︸ ︷︷ ︸

quantized

θH + (j1k2 − j2k1)︸ ︷︷ ︸
quantized

θL

)
FF̃
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Example 1: Periodic Potential

I Puzzle: diagonalize the kinetic terms⇒

aL = a2 + εa1︸ ︷︷ ︸
not periodic

and aH =
√

1− ε2θH︸ ︷︷ ︸
periodic

where ε = K12√
K11K22

L ⊃ 1
32π2

(
k2

aL

fL︸ ︷︷ ︸
quantized

+

(
k1 − εk2

F1

F2

)
aH√

1− ε2︸ ︷︷ ︸
not quantized

)
FF̃

I Resolution:
I When aH shifts, so does aL
I aL is periodic in the IR.
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Example 2: Higgs/Stückelberg Case

L =
2∑

i=1

1
2

F 2
i (∂µθi − qiAµ)2

︸ ︷︷ ︸
Scalar Kinetic Terms with

Stückelberg Couplings

− 1
4e2 FF︸ ︷︷ ︸

Stückelberg
Gauge Field
kinetic term

− 1
4g2 GG︸ ︷︷ ︸
Massless

Gauge Field
Kinetic Term

+
k1θ1 + k2θ2

32π2 GG̃︸ ︷︷ ︸
Axion Coupling

k1,k2∈Z

+ Lcon︸︷︷︸
addt’l terms
required for
gauge inv

3 Gauge Symmetries:
I Discrete shifts of θi by 2π
I U(1) gauge symmetry for Aµ: Aµ 7→ Aµ + ∂µα, θi 7→ θi + qiα

I θGG̃ term shifts under the U(1) symmetry:
δαLθGG̃ = k1q1+k2q2

32π2 αGG̃
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Example 2: Higgs/Stückelberg Case

If we diagonalize the mass terms:

L ⊃ 1
32π2

((
k1q2

F2

F1
− k2q1

F1

F2
)︸ ︷︷ ︸

not quantized?

aL +
(

k1q1 + k2q2

)
︸ ︷︷ ︸

vanishes when Lcon=0

aH

)
GG̃

aH ≡ 1
m2

A
(F 2

1 q1θ1 + F 2
2 q2θ2),

aL ≡ F1F2
m2

A
(q2θ1 − q1θ2),m2

A = F 2
1 q2

1 + F 2
2 q2

2

Model discussed in

I 1503.01015, 1503.02965: Shiu, Staessens, Ye

I 1906.10193: Fonseca, Harling, de Lima, Machado
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Example 2: Higgs/Stückelberg Case

aL coupling is still quantized!
I Lcon = 0:

U(1) invariance→ k1q1 + k2q2 = 0. The coupling is
1

32π2

(
k1q2

F2
F1
− k2q1

F1
F2
)aL = − k2

q1
gcd(q1,q2)

aL
PL

GG̃

I Lcon 6= 0: ex. KSVZ like model, Lcon from heavy fermions
Lcon cancels with irrational parts of aL coupling.
(See 1910.11349; 1909.11685: Choi, Shin, Yun)

Light axion period FL = F1F2gcd(q1,q2)
mA

is smaller than F1,F2

Read off from kinetic term 1
2F 2

L ∂µθL∂µθL
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Example 3: Non-Compact Scalar

Mix ordinary and monodromy axions, from dimensionally reducing
two 5d gauge fields.

Generates 4d potentials:
I Monodromy potential:

Vmon(θH) =
1
2

m2F 2
H(θH − 2πw)2 (1)

I Periodic Potential:

Vper (θA, θH) = −
3

64π6R4

∞∑
n=1

cos(nqAθA + nqHθH)

n5
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Example 3: Non-Compact Scalar
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Summary

I Axion mixing cannot evade coupling quantization
constraints. This limits options for generating large axion
field ranges.

I These constraints apply to many phenomologically
interesting models

I Can also be shown more formally in specific cases
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Back Up: Massless Two Axion Space (Example 1)

��= -π �� ��= �

��= π ��

��= �π ��

π�� �π��
��

π��

�π��

��

14/15



Motivation and Review Results Summary

Back Up: (Example 3)

L5D = −
∑

F=H,A−
1

4g2
5F

FMN(x)F MN(x)− m2

2g2
5H
HµHµ+DMχ

†(x)DMχ(x)

Field Content:
I HM(x), AM(x) are 5d gauge fields
I HM(x) Higgsed: H(x) ≡ HM(x)− i expiθ(x) ∂Me−iθ(x)

I θ(x) a periodic scalar
I axions are Wilson loop phases: θi ≡

∮
dx5G5i

Axion Gauge Field couplings from Chern-Simons terms:
I LCS = CA

16π2 ε
MNPQRFMTr[GNPGQR]

I Quantized by gauge invariance
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