Extended scalar sector of the EW ν_R model

Shreyashi Chakdar College of the Holy Cross <u>schakdar@holycross.edu</u>

Chakdar, Ghosh, Hung, Khan (in preparation, arXiv: 2005.XXXXX), Chakdar, Ghosh, Hoang, Hung, Nandi, Phys.Rev. D95 (2017) no.1, 015014, Chakdar, Ghosh, Hoang, Hung, Nandi, Ph

Chakdar, Ghosh, Hoang, Hung, Nandi, Phys.Rev. D93 (2016) no.3, 035007

Post Higgs LHC: where are we?

$EW \nu_R$: Model and Framework

- Neutrino mass is the only evidence of NP so far!
- Neutrino (v) masses \rightarrow popular "Seesaw mechanism"
- In general Seesaw Mechanism:
 - $v_R \rightarrow SU(2)_L \times U(1)_Y$ singlet
 - RH neutrino mass at GUT scale! NOT directly testable at LHC

$$m_{\nu} \sim \frac{(m_{\nu}^D)^2}{M_R} \leq 1 eV$$
 Dirac mass
Majorana mass

- Stand scenes: L-R : $m_D \sim \Lambda_{EW} M_R \sim M_{WR}$, GUT: $M_R \sim \Lambda_{GUT}$
- v_R 's are Sterile in standard scenarios
- What if $M_R \sim \Lambda_{EW}$? Can v_R 's be non-sterile?

Ref: P.Q Hung, PLB 649 (2007)

Chakdar Pheno2020

$EW \nu_R$: Model and mirror fermions

SM + Mirror Fermions + extended scalar sector Gauge Group : SU(3)_c x SU(2)_W x U(1)_Y

Particle content of $EW v_R$ model

• ν'_R s are non-sterile, RH doublets couples to the same W

05/05/20

Chakdar Pheno2020

Majorana and Dirac masses

Majorana

$$\mathcal{L}_{M} = g_{M} (l_{R}^{M,T} \sigma_{2}) (i \tau_{2} \tilde{\chi}) l_{R}^{M} + h.c.$$
$$\tilde{\chi} (3, \frac{Y}{2} = 1)$$
$$M_{R} = g_{M} v_{M}; < \chi^{0} >= v_{M} \sim \Lambda_{EW}$$
$$\tilde{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^{+} & \chi^{++} \\ \chi^{0} & -\frac{1}{\sqrt{2}} \chi^{+} \end{pmatrix} \text{Dirac}$$

 $\mathcal{L}_{S} = g_{SI}\overline{I}_{L}\phi_{S}I_{R}^{M} + h.c.$ $\phi_{S} \left(1, \frac{Y}{2} = 0\right)$ $m_{\nu}^{D} = g_{SI}v_{S} \quad \text{where} \quad \langle \phi_{S} \rangle = v_{S}$ $m_{\nu} \leq 1eV \quad \Rightarrow \quad v_{S} \sim 10^{5-6}eV \text{ with } g_{SI} \sim \mathcal{O}(1)$ or $v_{S} \sim \Lambda_{EW} \text{ with } g_{SI} \sim \mathcal{O}(10^{-6})$

Complete Scalar Sector

Scalar Sector Custodial symmetry

- $\rho = \frac{M_W^2}{M_Z^2} \cos^2 \theta_W = 1$ (custodial global symmetry SU(2))
- $v_M \sim O(\Lambda_{EW}) \rightarrow A$ "large" triplet vev would spoil $\rho = 1$ at Tree level
- To restore the Custodial symmetry, a triplet Higgs scalar $\xi = (3, \frac{\gamma}{2} = 0)$ is added such that

$$\chi = \begin{pmatrix} \chi^{0} & \xi^{+} & \chi^{++} \\ \chi^{-} & \xi^{0} & \chi^{+} \\ \chi^{--} & \xi^{-} & \chi^{0*} \end{pmatrix}$$

- The potential has a global $SU(2)_L \times SU(2)_R$ symmetry $\rightarrow SU(2)_D$
- Rich Higgs sector!
- The nature of EW symmetry breaking is intrinsically linked to the Majorana mass of the non-sterile RH neutrino

The scalar potential

$$\begin{split} V &= \lambda_{1a} \Big[Tr \Phi_1^{\dagger} \Phi_1 - v_1^2 \Big]^2 + \lambda_{2a} \Big[Tr \Phi_{1M}^{\dagger} \Phi_{1M} - v_{1M}^2 \Big]^2 + \lambda_{1b} \Big[Tr \Phi_2^{\dagger} \Phi_2 \\ &- v_2^2 \Big]^2 + \lambda_{2b} \Big[Tr \Phi_{2M}^{\dagger} \Phi_{2M} - v_{2M}^2 \Big]^2 + \lambda_3 \Big[Tr \chi^{\dagger} \chi - 3v_M^2 \Big]^2 \\ &+ \lambda_s \Big[\Phi_s^{\dagger} \Phi_s - v_s^2 \Big]^2 + \lambda_4 \Big[Tr \Phi_1^{\dagger} \Phi_1 - v_1^2 + Tr \Phi_{1M}^{\dagger} \Phi_{1M} - v_{1M}^2 \\ &+ Tr \Phi_2^{\dagger} \Phi_2 - v_2^2 + Tr \Phi_{2M}^{\dagger} \Phi_{2M} - v_{2M}^2 + Tr \chi^{\dagger} \chi - 3v_M^2 + \Phi_s^{\dagger} \Phi_s - v_s^2 \Big]^2 \Big] \\ &+ \lambda_{5a} \Big[(Tr \Phi_1^{\dagger} \Phi_1) (Tr \chi^{\dagger} \chi) - 2 (Tr \Phi_1^{\dagger} \frac{\tau^a}{2} \Phi_1 \frac{\tau^b}{2}) (Tr \chi^{\dagger} T^a \chi T^b) \Big] \\ &+ \lambda_{6a} \Big[(Tr \Phi_{1M}^{\dagger} \Phi_{1M}) (Tr \chi^{\dagger} \chi) - 2 (Tr \Phi_{2M}^{\dagger} \frac{\tau^a}{2} \Phi_{2M} \frac{\tau^b}{2}) (Tr \chi^{\dagger} T^a \chi T^b) \Big] \\ &+ \lambda_{5b} \Big[(Tr \Phi_2^{\dagger} \Phi_2) (Tr \chi^{\dagger} \chi) - 2 (Tr \Phi_{2M}^{\dagger} \frac{\tau^a}{2} \Phi_{2M} \frac{\tau^b}{2}) (Tr \chi^{\dagger} T^a \chi T^b) \Big] \\ &+ \lambda_{5b} \Big[(Tr \Phi_{2M}^{\dagger} \Phi_{2M}) (Tr \chi^{\dagger} \chi) - 2 (Tr \Phi_{2M}^{\dagger} \frac{\tau^a}{2} \Phi_{2M} \frac{\tau^b}{2}) (Tr \chi^{\dagger} T^a \chi T^b) \Big] \\ &+ \lambda_{5c} \Big[\{ \Phi_s^2 (Tr \Phi_1^{\dagger} \Phi_{1M} + Tr \Phi_1^{\dagger} \Phi_{2M} + Tr \Phi_2^{\dagger} \Phi_{1M} + Tr \Phi_2^{\dagger} \Phi_{2M}) + h.c. \} \\ &- 2 \Phi_s^{\dagger} \Phi_s (Tr \Phi_1^{\dagger} \Phi_{1M} + Tr \Phi_1^{\dagger} \Phi_{2M} + Tr \Phi_2^{\dagger} \Phi_{1M} + Tr \Phi_2^{\dagger} \Phi_{2M}) \Big] \\ &+ \lambda_{7a} \Big[(Tr \Phi_1^{\dagger} \Phi_{1}) (Tr \Phi_{1M}^{\dagger} \Phi_{1M}) - (Tr \Phi_1^{\dagger} \Phi_{1M}) (Tr \Phi_{1M}^{\dagger} \Phi_{1}) \Big] \\ &+ \lambda_{7ab} \Big[(Tr \Phi_1^{\dagger} \Phi_{1}) (Tr \Phi_{2M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) (Tr \Phi_{2M}^{\dagger} \Phi_{1M}) \Big] \\ &+ \lambda_{7abb} \Big[(Tr \Phi_1^{\dagger} \Phi_{1}) (Tr \Phi_{2M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) (Tr \Phi_{2M}^{\dagger} \Phi_{1M}) \Big] \\ &+ \lambda_{7abb} \Big[(Tr \Phi_1^{\dagger} \Phi_{1}) (Tr \Phi_{2M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) (Tr \Phi_{2M}^{\dagger} \Phi_{1M}) \Big] \\ &+ \lambda_{7abb} \Big[(Tr \Phi_1^{\dagger} \Phi_{1}) (Tr \Phi_{2M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) (Tr \Phi_{2M}^{\dagger} \Phi_{1M}) \Big] \\ &+ \lambda_{7abb} \Big[(Tr \Phi_1^{\dagger} \Phi_{2}) (Tr \Phi_{1M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) (Tr \Phi_{2M}^{\dagger} \Phi_{1M}) \Big] \\ &+ \lambda_{7abb} \Big[(Tr \Phi_1^{\dagger} \Phi_{2}) (Tr \Phi_{1M}^{\dagger} \Phi_{2M}) - (Tr \Phi_1^{\dagger} \Phi_{2M}) \Big] \\ &+ \lambda_{8} \Big[Tr \chi^{\dagger} \chi \chi^{\dagger} \chi - (Tr \chi^{\dagger} \chi)^2 \Big], \end{split}$$

Transformations:

$$\Phi_{1,2} \to e^{-2i\alpha_{\rm SM}} \Phi_{1,2}, \Phi_{1M,2M} \to e^{2i\alpha_{\rm MF}} \Phi_{1M,2M}$$

$$\tilde{\chi} \to e^{-2i\alpha_{\rm MF}} \tilde{\chi}, \xi \to \xi, \Phi_s \to e^{-i(\alpha_{\rm SM} + \alpha_{\rm MF})} \Phi_s.$$

The blue $\lambda_{5/6}$'s terms break explicitly the $U(1)_{SM} \times U(1)_{MF}$ symmetry

Blue terms help to get exact minimization of the scalar potential and non-zero mass for the singlet-type complex scalar field.

05/05/20

- Physical scalars can be groped into Custodial SU(2)_D states: 18 physical scalars grouped 5 + 3 + 3 + 3 + 3 + 1
- Quintet $\rightarrow H_5^{\pm\pm}, H_5^{\pm}, H_5^0$
- Triplet $\to H_3^{\pm}, H_3^0, H'_3^{\pm}, H'_3^0, H_M^{\pm}, H_M^0, H_M'^{\pm}, H_M'^0$
- Real Singlet $\rightarrow H_1^0, H_1'^0, H_{1M}^0, H_{1M}'^0, H_{1M}^{10}, H_1^{s0}$
- Complex Singlet $\rightarrow A_s^0$
- Singlet States:

$$\widetilde{H}_{s}^{0} = \phi_{1}^{0r}, \ H_{2}^{0} = \phi_{2}^{0r}, \ H_{1M}^{0} = \phi_{1M}^{0r}, \ H_{2M}^{0} = \phi_{2M}^{0r},$$
$$H_{S}^{0} = \phi_{s}^{0r}, \ H_{1}^{0'} = \sqrt{\frac{2}{3}} \chi^{0r} + \sqrt{\frac{1}{3}} \zeta^{0}, \ \text{and} \ \overline{A_{s}^{0} = i\phi_{s}^{0i}}$$

• VEV's satisfy: $v_{\rm SM} = \sqrt{v_1^2 + v_{1M}^2 + v_2^2 + v_{2M}^2 + 8v_M^2} \equiv 246.221^2 \ {\rm GeV}^2$

Masses of the scalars

• At tree level, the mass of the complex singlet scalar $A_s^0 = i \emptyset_s^{0i}$

$$M_{A_s^0}^2 = 8\,\lambda_{5c}\,(v_1 + v_2)(v_{1M} + v_{2M}).$$

• In gen, \tilde{H}_{s}^{0} , H_{2}^{0} , H_{1M}^{0} , H_{2M}^{0} , H_{s}^{0} and $H_{1}^{0'}$ can mix:

 $\mathcal{M}_{Singlet}^{real} = v_{SM}^{2} \begin{pmatrix} 8(\lambda_{1a} + \lambda_{4})s_{1}^{2} & 8\lambda_{4}s_{1}s_{2} & 8\lambda_{4}s_{1}s_{m} & 8\lambda_{4}s_{1}s_{2m} & 8\lambda_{4}s_{1}s_{2m} & 8\lambda_{4}\frac{v_{s}s_{1}}{v_{SM}} & 2\sqrt{6}\lambda_{4}s_{1}s_{m} \\ 8\lambda_{4}s_{1}s_{2} & 8(\lambda_{1b} + \lambda_{4})s_{2}^{2} & 8\lambda_{4}s_{2}s_{m} & 8\lambda_{4}s_{2}s_{2m} & 8\lambda_{4}s_{2}s_{2m} \\ 8\lambda_{4}s_{1}s_{m} & 8\lambda_{4}s_{2}s_{m} & 8(\lambda_{2a} + \lambda_{4})s_{m}^{2} & 8\lambda_{4}s_{m}s_{2m} & 8\lambda_{4}\frac{v_{s}s_{m}}{v_{SM}} & 2\sqrt{6}\lambda_{4}s_{m}^{2}s_{m} \\ 8\lambda_{4}s_{1}s_{2m} & 8\lambda_{4}s_{2}s_{2m} & 8\lambda_{4}s_{m}s_{2m} & 8(\lambda_{2b} + \lambda_{4})s_{2m}^{2} & 8\lambda_{4}\frac{v_{s}s_{2m}}{v_{SM}} & 2\sqrt{6}\lambda_{4}s_{m}^{2}s_{m} \\ 8\lambda_{4}s_{1}s_{2m} & 8\lambda_{4}s_{2}s_{2m} & 8\lambda_{4}s_{m}s_{2m} & 8(\lambda_{2b} + \lambda_{4})s_{2m}^{2} & 8\lambda_{4}\frac{v_{s}s_{2m}}{v_{SM}} & 2\sqrt{6}\lambda_{4}s_{m}s_{2m} \\ 8\lambda_{4}\frac{v_{s}s_{1}}{v_{SM}} & 8\lambda_{4}\frac{v_{s}s_{2}}{v_{SM}} & 8\lambda_{4}\frac{v_{s}s_{2m}}{v_{SM}} & 8\lambda_{4}\frac{v_{s}s_{2m}}{v_{SM}} & 8(\lambda_{4} + \lambda_{s})\frac{v_{s}^{2}}{v_{SM}^{2}} & 2\sqrt{6}\lambda_{4}\frac{v_{s}s_{m}}{v_{SM}} \\ 2\sqrt{6}\lambda_{4}s_{1}s_{m} & 2\sqrt{6}\lambda_{4}s_{2}s_{m} & 2\sqrt{6}\lambda_{4}s_{m}^{2} & 2\sqrt{6}\lambda_{4}s_{m}s_{2m} & 2\sqrt{6}\lambda_{4}s_{m}^{2}s_{m} & 3(\lambda_{3} + \lambda_{4})s_{m}^{2} \end{pmatrix}$

- We denote the 6 mass eigenstates by $\widetilde{H_s}$, \widetilde{H} , \widetilde{H}' , \widetilde{H}'' , \widetilde{H}''' , \widetilde{H}''' , \widetilde{H}''''
- $\widetilde{H_s} \rightarrow \text{lightest, singlet DM, next heavier ones are } \widetilde{H'}, \widetilde{H''}, \widetilde{H'''}, \text{ with heaviest state}$ $\widetilde{H''''}$ and \widetilde{H} being the 125 GeV Higgs

BP's and BR's: Scalar Sector masses

	Benchmark Points																							
	VEV of the scalar fields (GeV)						Scalar quartic couplings λ 's							Masses of the scalar fields (GeV)										
	v_1	v_2	v_{1M}	v_{2M}	v_M	v_s	λ_{1a}	λ_{1b} .	λ_{2a}	λ_{2b}	λ_3	λ_4	λ_5	λ_8	λ_s	$M_{\widetilde{H}^{\prime\prime\prime\prime\prime}}$	$M_{\widetilde{H}^{\prime\prime\prime\prime}}$	$M_{\widetilde{H}''}$	$M_{\widetilde{H}'}$	$M_{\widetilde{H}}$	$M_{\widetilde{H}_s}$	m_5	$m_{3,H^{\pm},H_{3}^{0}}$	$m_{3,\text{All others}}$
BP-1	39.37	145	95	95	50	10^{-7}	6.0	6.0	6.0	6.0	.087	0.2	5.0	5.0	0.1	1022.27	679.172	658.179	277.488	125.291	10^{-6}	953.61	550.567	711.511
$0.65\% \phi_1, 99.1\% (\chi, \xi)$																								
BP-2	90.4145	120	95	95	50	10^{-7}	0.27	9.0	9.0	9.0	0.24	0.04	5.0	5.0	0.1	1020.54	809.661	806.102	146.706	124.43	10^{-6}	953.61	550.567	711.511
$18.88\% \phi_1, 81.11\% (\chi, \xi)$																								
BP-3	90.4145	120	95	95	50	10^{-7}	0.242	9.0	9.0	9.0	0.262	0.00068	5.0	5.0	0.1	1018.27	806.163	806.102	126.037	125.484	10^{-6}	953.61	550.567	711.511
$10.54\% \phi_1, 89.54\% (\chi, \xi)$																								

TABLE I: BPs obtained fitting for Higgs mass at 125 GeV in conjunction with other heavier scalars

		Benchmark Points and Branching of SM-like Higgs													
	$\Gamma_{\rm SM-likeHiggs}^{\rm Total}$		Branching of SM-like Higgs												
	(MeV)	$Br(\widetilde{H}\to b\bar{b})$	$Br(\widetilde{H} \to \tau \bar{\tau})$	$Br(\widetilde{H} \to WW^*)$	$Br(\widetilde{H}\to ZZ^*)$	$Br(\widetilde{H}\to\gamma\gamma)$	$Br(\widetilde{H} \to \widetilde{H}_s \widetilde{H}_s, A_s^0 A_s^0)$	$Br(\widetilde{H} \to {\rm Other \; BSM})$							
SM	~ 4.0	$5.66 \mathrm{E}^{-01}$	$6.21 \mathrm{E}^{-02}$	$2.26 \mathrm{E}^{-01}$	$2.81 \mathrm{E}^{-02}$	$2.28 \mathrm{E^{-03}}$	_	_							
BP-1	~ 4.0	$1.53 {\rm E}^{-01}$	$\sim 1.0 \mathrm{E}^{-04}$	$\sim 1.0 \mathrm{E}^{-06}$	$\sim 1.0\mathrm{E}^{-06}$	$\sim 1.0 \mathrm{E}^{-06}$	$8.47 \mathrm{E^{-01}}$	_							
BP-2	~ 4.0	$7.09 \mathrm{E^{-01}}$	$\sim 1.0 \mathrm{E}^{-04}$	$\sim 1.0 \mathrm{E}^{-06}$	$\sim 1.0 \mathrm{E}^{-06}$	$\sim 1.0 \mathrm{E}^{-06}$	$2.90 \mathrm{E^{-01}}$	_							
BP-3	~ 2.8	$9.8 \mathrm{E}^{-01}$	$\sim 1.0 \mathrm{E}^{-04}$	$\sim 1.0 \mathrm{E}^{-06}$	$\sim 1.0\mathrm{E}^{-06}$	$\sim 1.0 \mathrm{E}^{-06}$	$2.90 \mathrm{E^{-07}}$	_							

TABLE II: 125 GeV Higgs BR's corresponding to the BP's shown in Table I

Singlet DM Prospect and LLP signals

- $A_s^0 = i \phi_s^{0i}$ is investigated to be a feasible DM candidate
- M_R are in EW Scale (~ 250 GeV) and from lepton sector ($\mu \rightarrow e\gamma$, μ to e conversion) bounds on the coupling g_{sl} < 10⁻⁴
- The singlet connecting SM to Mirror world can be light (~KeV scale) DM candidate!
- As a result of g_{sl} being constrained, lightest mirror fermions are LLPs (Decay length can be substantially LARGE, mm-> cm range)
- Typical decay lengths >> Hadronization length~ O(fermi)
- Formation of QCD bound states: Mirror mesons $\bar{q}^M q^M$ and hybrid mesons $\bar{q}^M q$ get formed first before decay
- Collider searches of DM promising through the *Lifetime* frontier due to the possibility of large displaced vertex ($e_R^M \rightarrow e + \varphi$)

- EW v_R scenario links neutrino, DM and LLP's
- Framework has Majorana masses and mirror fermions having masses within the reach of the current colliders
- We analyze the complete scalar sector spectrum which includes heavier triplets, doublets and singlet Higgs states in conjunction with the 125-GeV LHC data
- Model contains distinguished Long-lived particle (*LLP*) signals with large displaced vertices (mm-cm) in quark and lepton sectors
- The case of whether neutrinos are of a Dirac or Majorana nature can be settled if like-sign dilepton signals are discovered at displaced vertices at LHC
- Also investigating the prospect of the light singlet scalar fulfilling the role of the light DM candidate in this framework

05/05/20

Thank You