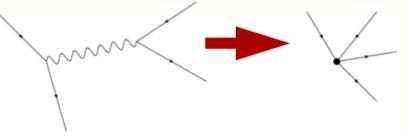

Drell-Yan in the SMEFT Including Coupling Shift Effects

Alyssa Horne, Jordan Pittman, Marcus Snedeker, William Shepherd, Joel W. Walker, arXiv: $2006 \pm 1.XXXXX$

Outline

- ➤ Introduction
- ≻ Why SMEFT
- \succ The operators and tools used
- ➤ Error Calculations and Parameters
- \succ Results
- ≻ Outlook



Motivation

- In absence of new on-shell phenomena, model independence is becoming more important to precision measurement interpretation at the LHC.
 - $\circ~~{\rm LHC}$ has effectively become an intensity-frontier experiment
 - Precise measurements are hard; don't want a new one for each model nor to analyze just one model
 - Reusability for yet-unknown future models important to data utility preservation

Effective Field Theory

- The canonical example of an EFT is Fermi's theory of weak decay
 - A real limit of the SM
 - We still use this today!

- Captures physics in a particular energy regime
 - $\circ \quad {\rm Perturbation\, expansion\, in\, powers\, of\, E/M_W}$
- Ability to systematically improve theory predictions is the key virtue of EFTs

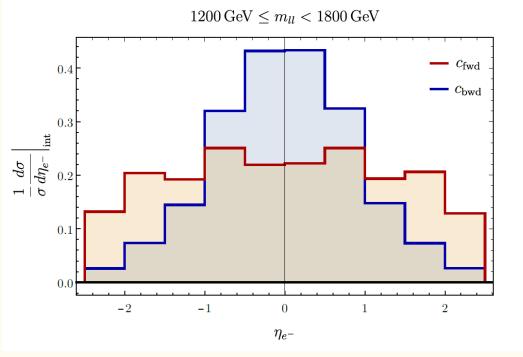
S.M.E.F.T.

- The Standard Model Effective Field Theory accepts the absence of light new particles and sets up an expansion in E/Λ_{NP} (here we assume $\Lambda_{NP} = 10 \text{ TeV}$)
 - \circ Assumes that h(125) is THE Higgs of EWSB; assuming otherwise yields the related Higgs EFT
 - $\circ \quad {\rm Retains \ full \ SM \ gauge \ group \ in \ higher-dimensional \ operators}$
- SMEFT effects organized by operator dimension:

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \mathcal{L}^{(8)} + \dots$

$$\mathcal{L}^{(i)} = \sum_{k=1}^{N_i} \frac{c_k^{(i)}}{\Lambda^{i-4}} Q_k^{(i)}$$

• Operators built entirely out of SM fields


Relevant Operators to Drell-Yan

- Direct 4-fermion operator effects grow with energy, but they aren't the only SMEFT effect in Drell-Yan
- Other class of operators shifts definitions of would-be SM couplings, leading to non-growing contributions
- Four classes of physically-distinct behavior caused by SMEFT operators

o True en eners times true en muler heberiere	Shift Operators	Direct Forward Operators	Direct Backward Operators
 Two energy times two angular behaviors 	$Q_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	$Q_{lq}^{(1)} \equiv \left(\bar{l}_p \gamma_\mu l_p\right) \left(\bar{q}_s \gamma^\mu q_s\right)$	$Q_{lu} \equiv \left(\bar{l}_p \gamma_\mu l_p\right) \left(\bar{u}_s \gamma^\mu u_s\right)$
	$Q_{ll}' \equiv (\bar{l}_p \gamma_\mu l_s) (\bar{l}_s \gamma^\mu l_p)$	$Q_{lq}^{(3)} \equiv \left(\bar{l}_p \gamma_\mu \tau^I l_p\right) \left(\bar{q}_s \gamma^\mu \tau^I q_s\right)$	$Q_{ld} \equiv \left(\bar{l}_p \gamma_\mu l_p\right) \left(\bar{d}_s \gamma^\mu d_s\right)$
	$Q_{Hd} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{eu} \equiv \left(\bar{e}_p \gamma_\mu e_p\right) \left(\bar{u}_s \gamma^\mu u_s\right)$	$Q_{qe} \equiv \left(\bar{q}_p \gamma_\mu q_p\right) \left(\bar{e}_s \gamma^\mu e_s\right)$
	$Q_{Hu} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	$Q_{ed} \equiv \left(\bar{e}_p \gamma_\mu e_p\right) \left(\bar{d}_s \gamma^\mu d_s\right)$	
$c_{\rm fwd}^{\rm (shift)} =014C_{Hd}12C_{HD}047C_{He} + .19C_{Hl}^{(1)}29C_{Hl}^{(3)}058C_{Hg}^{(1)} + .14C_{Hg}^{(3)}$	$Q_{He} \equiv (H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$		
	$Q_{Hl}^{(1)} \equiv (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{l}_p \gamma^{\mu} l_r)$		
$+ .062C_{Hu}28C_{HWB} + .24C_{ll}'$	$Q_{Hl}^{(3)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$c_{\rm bwd}^{\rm (shift)} = .006C_{Hd} + .012C_{HD} + .008C_{He}029C_{Hl}^{(1)} + .016C_{Hl}^{(3)} + .042C_{Hq}^{(1)}013C_{Hq}^{(3)}$	$Q_{Hq}^{(1)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
	$Q_{Hq}^{(3)} \equiv (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$038 C_{Hu} + .009 C_{HWB}021 C_{ll}^{\prime}$	$Q_{HD} \equiv \left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$		

Forward/Backward at the LHC

- Forward and backward at partonic level map to higher and lower |η| in the symmetric LHC environment
- We bin 'forward' as events with $|\eta_e -| > |\eta_e +|$, also bin in $m_{\ell\ell}$
- Operators of forward class preferentially, but not exclusively, populate appropriate bin

Statistical Paradigm and Error Calculations

- Statistical inferences were accounted for by a χ^2 test
 - How large could a dimensionless coupling be, or how low could a scale of new physics be, before we could definitively rule it out with a given amount of data?
- Three classes of errors are added in quadrature
 - Statistical errors are pure Poisson
 - Systematic errors create an asymptotic floor for improvement of sensitivity with statistics
 - Modeled as improving proportional to statistics until reaching relative size of 2%
 - \circ Theoretical errors in signal modelling are also nontrivial here

Theoretical Uncertainties in the SMEFT


- A consistent EFT expansion is for an OBSERVABLE (e.g. cross-section, not amplitude), and includes ALL contributions at a given order
- Amplitudes for dimension-6 EFT operators go like Λ^{-2} and dim-8 go like Λ^{-4}
- Squaring to get the cross-section, the dim-6 cross-term with the SM gives leading contributions.
- The dim-6 squared term is a suitable proxy for the shape of unknown dim-8 term; we estimate the multiplicity of dim-8 operators contributing to the error, and include the dim-6 squared cross section as an error as well

Results (preliminary)

Direct forward and backward Pure Forward and Backward Strong constraint Shift Forward and Backward from σ_{tot} 400 Weak constraint • from forward-2 200 backward asymmetry CBackward Widening at larger *C* ٠ Shift Backward due to increasing 0 theory errors -2 100 fb⁻¹ 300 fb⁻¹ 3000 fb⁻¹ -200 -4 -400 -2 0 2 -4 1 -2 CForward -4 0 2 4 C_{Shift} Forward

Shift forward and backward

Results (preliminary)

Direct forward and shift forward

Outlook

- The SMEFT is the technology at the center of the next-generation of the work championed by the LEP EWWG.
- It is important that our model independent searches be both broadly applicable and accurate in their claims; this is only true when theory errors are carefully considered.
- This completes the SMEFT study of hadronically-quiet dilepton production, yielding 4 total constraints, one of which bounds new physics at the 10 TeV scale
- Ultimately, combining these bounds with those from other precision measurements can lead to a global view of what is definitely ruled out in the SMEFT coupling parameter space

Thank You!