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Quantum Adiabatic Optimization — D-Wave machine
» Task: Find the ground state of an Ising lattice

|
Ul +]+]+
P+ +]+]+

H = —Z hiSi - Z Jijsisj S; € {—1,+1}
i i,j

++| [ +]+
+ |+ +]+
I

» 2N possible states, where N is the number of spin sites.
» For general 4; and J;;, finding the exact ground state using a classical
computer takes O (2V) time. Intractable for N > ~ 40
Adiabatic Quantum Optimization (AQO):
» Choose a Hamiltonian H, which doesn’t commute with #. Initialize the
system in the ground state of Hj.
> Adiabatically (slowly) evolve the Hamiltonian of the system from #, to H.

t t
H(t) = (1 - ?)7{0 + o H
» System stays in the ground state of H(¢). At time r = T, measure the state of

the system.
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Quantum Adiabatic Optimization — D-Wave machine

Takeaway: Find an Ising Hamiltonian whose ground state describes the
solution to the problem of interest. Solve using AQO.

» D-wave systems implement AQO. D-Wave 2000Q has 2048 qubits. Pegasus

(2020) will have 5640 qubits.

» Approximate ground states can be found using heuristic algorithms like
simulated annealing on classical computers.

> Note: AQO is different from Universal Gate Quantum Computing.
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The physics problem

Search for modeled new physics in collider data

Hypothesis tests:

> Ingredients:
1. Data D
2. Null hypothesis: Hy (say Standard Model)
3. Alternative hypothesis: H; (say SM + new physics)

(no free parameter in either hypothesis for simplicity)

> Test statistic 7S to perform the hypothesis test with:
> Function of data D
> Inspired by Hy and H;

» Examples: Likelihood ratio test, y? difference test
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What if we don’t have an alternative hypothesis?
Alternative hypothesis becomes “not H,”.
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The physics problem

Search for unmodeled new physics in collider data

Hypothesis-tests Goodness-of-fit tests:

> Ingredients:
1. Data D
2. Null hypothesis: Hy (say Standard Model)
3. Alkternative-hypothesis—Hr—say-SM——new-physies)

(no free parameter in either hypothesis for simplicity)

> Test statistic 7S to perform the hypothesis test with:
> Function of data D
> Inspired by Hy and Hr

» Examples: Likelihood ratio test, y? difference test

5 EE ) HI) 2 2 2

LR=1 = -
" P(D5 Hy) Xa = Xito = Xt1;

What if we don’t have an alternative hypothesis?
Alternative hypothesis becomes “not H,”.
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The difficulty: Look-elsewhere effect

> p-value depends on:
» The data and Hy (doesn’t depend on H;, even when available)
> Test statistic 7S

The more types of deviations a test is sensitive to

l

The easier it is for statistical fluctuations to mimic a given value of TS or higher.
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Specificity (sensitivity) takes a hit when we lose the alternative
hypothesis in the design of 75.
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Look-elsewhere effect in an N binned y? test

e; is the expected count under H,.

N PRY N
V2= Z (i —ei)” _ ZA? 0;-s are Poisson distributed.
. e; . . P
=1 ' i=1 A = 2274 (normalized residual)
ei

A;-s are mutually independent, and follow a standard normal distribution under Hy.
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Controlling the Look-elsewhere effect

» Can’t limit attention to a specific alternative hypotheses (we aren’t given one).
> Instead limit attention to “meaningful deviations”.

1 20 40 60 80 100 1 20 40 60 80 100

How are these two images different?
Can we capture the intuition in a test statistic?
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Ising model to capture spatial correlations in A;-s

> Associate an Ising spin site with each bin in the histogram.

9 T2 LTy 2
i,j=1

NoAdA s 1N (A +A)? 1+ ss; |1, for nearest neighbors
H = _Z; ) ] Y0, otherwise
=
> The first term tries to align spin s; with its corresponding deviation A;.
— The greater the value of A;, the greater the reward.

» The second term tries to align spin s; with the spins s; of its neighbors.
- The greater the value of |A; + Aj|, the greater the reward (meaningful deviations).

> Use ground state H,,;, of the system as a test statistic — the lower the
ground state energy, the greater the deviation from the null hypotheses.
- Without the second term, Hpin = —x2/4.
— The pull from the second term on a spin could conflict with the pull from the first.
— This effect makes the exact computation of the ground state intractable classically.
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The new test statistic in action

annealing.
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l-dimensional data

» Approximate ground state
discovered using simulated

» Note how some spins are
anti-aligned with their deviations.
A P=1857 Hopin = — 82.5 > Hmin effectively distinguishes
between signal and noise of
comparable strength.
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The new test statistic in action
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ROC curves and p-values

» The new test outperforms a number of common tests in our simulations.
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Summary and outlook

Properties of a good goodness-of-fit test:
> Should exploit the typical differences between statistical noise and

plausible real effects v/
- Here we leverage spatial correlations.

» Should work with multi-dimensional data v/
- New physics signals are likely to be hidden in multi-dimensional distributions.

» The detected deviations should be interpretable v/
- Extremely important in the absence of an alternative hypothesis.

New physics or background systematics?

» Our simulators aren’t perfect, especially parts related to non-perturbative QCD
(fragmentation, hadronization), and detector response.

> An interpretable test can help understand and remove deficiencies in current
generative models and bring down systematic uncertainties — especially important
in many HL-LHC analyses expected to be bottlenecked by systematics.

Thak you! Questions?
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