
A quantum algorithm for model independent
searches for new physics

Prasanth Shyamsundar
University of Florida

based on [arXiv:2003.02181]

Prof. Konstantin T. Matchev
Prasanth Shyamsundar
Dr. Jordan Smolinsky

Pheno 2020
May 4-6, 2020



Quantum Adiabatic Optimization — D-Wave machine
I Task: Find the ground state of an Ising lattice

H = −
∑
i

hisi −
∑
i, j

Ji j sisj si ∈ {−1,+1}

+ + − + +

+ + − + +

− + − + +

+ − − − +

+ + + − −

I 2N possible states, where N is the number of spin sites.
I For general hi and Ji j , finding the exact ground state using a classical

computer takes O
(
2N

)
time. Intractable for N > ∼ 40

Adiabatic Quantum Optimization (AQO):
I Choose a Hamiltonian H0 which doesn’t commute with H . Initialize the

system in the ground state of H0.
I Adiabatically (slowly) evolve the Hamiltonian of the system from H0 to H .

H(t) =
(
1 −

t
T

)
H0 +

t
T
H

I System stays in the ground state of H(t). At time t = T , measure the state of
the system.
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Quantum Adiabatic Optimization — D-Wave machine

Takeaway: Find an Ising Hamiltonian whose ground state describes the
solution to the problem of interest. Solve using AQO.

I D-wave systems implement AQO. D-Wave 2000Q has 2048 qubits. Pegasus
(2020) will have 5640 qubits.

I Approximate ground states can be found using heuristic algorithms like
simulated annealing on classical computers.

I Note: AQO is different from Universal Gate Quantum Computing.
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The physics problem
Search for unmodeled new physics in collider data

Hypothesis tests:
I Ingredients:

1. Data D
2. Null hypothesis: H0 (say Standard Model)
3. Alternative hypothesis: H1 (say SM + new physics)

(no free parameter in either hypothesis for simplicity)
I Test statistic TS to perform the hypothesis test with:

I Function of data D
I Inspired by H0 and H1

I Examples: Likelihood ratio test, χ2 difference test

LR = ln
P(D ; H1)

P(D ; H0)
χ2d = χ2H0

− χ2H1

What if we don’t have an alternative hypothesis?
Alternative hypothesis becomes “not H0”.
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The physics problem
Search for unmodeled new physics in collider data

Hypothesis tests Goodness-of-fit tests:
I Ingredients:

1. Data D
2. Null hypothesis: H0 (say Standard Model)
3. Alternative hypothesis: H1 (say SM + new physics)

(no free parameter in either hypothesis for simplicity)
I Test statistic TS to perform the hypothesis test with:

I Function of data D
I Inspired by H0 and H1

I Examples: Likelihood ratio test, χ2 difference test

LR = ln
P(D ; H1)

P(D ; H0)
χ2d = χ2H0

− χ2H1

What if we don’t have an alternative hypothesis?
Alternative hypothesis becomes “not H0”.
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The difficulty: Look-elsewhere effect
I p-value depends on:

I The data and H0 (doesn’t depend on H1, even when available)
I Test statistic TS

The more types of deviations a test is sensitive to
↓

The easier it is for statistical fluctuations to mimic a given value of TS or higher.
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Specificity (sensitivity) takes a hit when we lose the alternative
hypothesis in the design of TS.
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Look-elsewhere effect in an N binned χ2 test

χ2 =

N∑
i=1

(oi − ei)2

ei
=

N∑
i=1

∆
2
i

ei is the expected count under H0.
oi-s are Poisson distributed.

∆i =
oi − ei
√

ei
(normalized residual)

∆i-s are mutually independent, and follow a standard normal distribution under H0.
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χ2 = 129.7

Top row: Background only
Bottom row: Background + signal

In these cases, data from the two
hypotheses have the same χ2 value.

Yet, the “eye-ball test” can
distinguish between them.
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Controlling the Look-elsewhere effect

I Can’t limit attention to a specific alternative hypotheses (we aren’t given one).
I Instead limit attention to “meaningful deviations”.
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How are these two images different?
Can we capture the intuition in a test statistic?
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Ising model to capture spatial correlations in ∆i-s

I Associate an Ising spin site with each bin in the histogram.

H = −

N∑
i=1

|∆i |∆i

2

si
2
−

1

2

N∑
i, j=1

wi j

(∆i + ∆j)
2

4

1 + sisj
2

wi j =

{
1, for nearest neighbors
0, otherwise

I The first term tries to align spin si with its corresponding deviation ∆i.
– The greater the value of ∆i , the greater the reward.

I The second term tries to align spin si with the spins sj of its neighbors.
– The greater the value of |∆i + ∆ j |, the greater the reward (meaningful deviations).

I Use ground state Hmin of the system as a test statistic — the lower the
ground state energy, the greater the deviation from the null hypotheses.

– Without the second term, Hmin = −χ
2/4.

– The pull from the second term on a spin could conflict with the pull from the first.
– This effect makes the exact computation of the ground state intractable classically.
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The new test statistic in action
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1-dimensional data

I Approximate ground state
discovered using simulated
annealing.

I Note how some spins are
anti-aligned with their deviations.

I Hmin effectively distinguishes
between signal and noise of
comparable strength.

χ2 Hmin
Bkg only 146.0 −71.3
Bkg + Sig 145.7 −82.5
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The new test statistic in action
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2-dimensional data

I Approximate ground state
discovered using simulated
annealing.

I Note how some spins are
anti-aligned with their deviations.

I Hmin effectively distinguishes
between signal and noise of
comparable strength.

χ2 Hmin
Bkg only 129.7 −129.6
Bkg + Sig 129.7 −168.2
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ROC curves and p-values

I The new test outperforms a number of common tests in our simulations.
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Summary and outlook
Properties of a good goodness-of-fit test:
I Should exploit the typical differences between statistical noise and

plausible real effects X
– Here we leverage spatial correlations.

I Should work with multi-dimensional data X
– New physics signals are likely to be hidden in multi-dimensional distributions.

I The detected deviations should be interpretable X
– Extremely important in the absence of an alternative hypothesis.

New physics or background systematics?
I Our simulators aren’t perfect, especially parts related to non-perturbative QCD

(fragmentation, hadronization), and detector response.
I An interpretable test can help understand and remove deficiencies in current

generative models and bring down systematic uncertainties — especially important
in many HL-LHC analyses expected to be bottlenecked by systematics.

Thank you! Questions?
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