A quantum algorithm for model independent searches for new physics

Prasanth Shyamsundar

University of Florida

based on [arXiv:2003.02181]

Prof. Konstantin T. Matchev Prasanth Shyamsundar Dr. Jordan Smolinsky

> Pheno 2020 May 4-6, 2020

Quantum Adiabatic Optimization — D-Wave machine

Task: Find the ground state of an Ising lattice

$$\mathcal{H} = -\sum_{i} h_i s_i - \sum_{i,j} J_{ij} s_i s_j \qquad \qquad s_i \in \{-1, +1\}$$

- > 2^N possible states, where N is the number of spin sites.
- For general h_i and J_{ij} , finding the <u>exact</u> ground state using a classical computer takes $O(2^N)$ time. Intractable for $N > \sim 40$

Adiabatic Quantum Optimization (AQO):

- Choose a Hamiltonian H₀ which doesn't commute with H. Initialize the system in the ground state of H₀.
- Adiabatically (slowly) evolve the Hamiltonian of the system from \mathcal{H}_0 to \mathcal{H} .

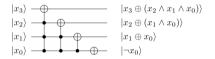
$$H(t) = \left(1 - \frac{t}{T}\right)\mathcal{H}_0 + \frac{t}{T}\mathcal{H}$$

System stays in the ground state of H(t). At time t = T, measure the state of the system.

Quantum Adiabatic Optimization — D-Wave machine

Takeaway: Find an Ising Hamiltonian whose ground state describes the solution to the problem of interest. Solve using AQO.

- D-wave systems implement AQO. D-Wave 2000Q has 2048 qubits. Pegasus (2020) will have 5640 qubits.
- Approximate ground states can be found using heuristic algorithms like simulated annealing on classical computers.
- Note: AQO is different from Universal Gate Quantum Computing.



The physics problem

Search for modeled new physics in collider data

Hypothesis tests:

- Ingredients:
 - 1. Data D
 - 2. Null hypothesis: H_0 (say Standard Model)
 - 3. Alternative hypothesis: H_1 (say SM + new physics) (no free parameter in either hypothesis for simplicity)
- ► Test statistic *TS* to perform the hypothesis test with:
 - Function of data D
 - Inspired by H₀ and H₁
- **>** Examples: Likelihood ratio test, χ^2 difference test

$$LR = \ln \frac{\mathcal{P}(D; H_1)}{\mathcal{P}(D; H_0)} \qquad \qquad \chi_d^2 = \chi_{H_0}^2 - \chi_{H_1}^2$$

What if we don't have an alternative hypothesis? Alternative hypothesis becomes "not H_0 ".

The physics problem

Search for unmodeled new physics in collider data

Hypothesis tests Goodness-of-fit tests:

- Ingredients:
 - 1. Data D
 - 2. Null hypothesis: H_0 (say Standard Model)
 - 3. Alternative hypothesis: *H*₁ (say SM + new physics) (no free parameter in either hypothesis for simplicity)
- ▶ Test statistic *TS* to perform the hypothesis test with:
 - Function of data D
 - Inspired by H_0 and H_T
- **•** Examples: Likelihood ratio test, χ^2 difference test

$$LR = \ln \frac{\mathcal{P}(D; H_1)}{\mathcal{P}(D; H_0)} \qquad \qquad \chi_d^2 = \chi_{H_0}^2 - \chi_{H_1}^2$$

What if we don't have an alternative hypothesis? Alternative hypothesis becomes "not H_0 ".

The difficulty: Look-elsewhere effect

- *p*-value depends on:
 - The data and H_0 (doesn't depend on H_1 , even when available)
 - Test statistic TS

The more types of deviations a test is sensitive to

The easier it is for statistical fluctuations to mimic a given value of *TS* or higher.



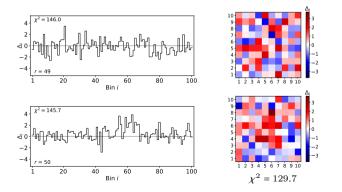
Specificity (sensitivity) takes a hit when we lose the alternative hypothesis in the design of *TS*.

Look-elsewhere effect in an N binned χ^2 test

$$\chi^{2} = \sum_{i=1}^{N} \frac{(o_{i} - e_{i})^{2}}{e_{i}} = \sum_{i=1}^{N} \Delta_{i}^{2}$$

 e_i is the expected count under H_0 . o_i -s are Poisson distributed. $\Delta_i = \frac{o_i - e_i}{\sqrt{e_i}}$ (normalized residual)

 Δ_i -s are mutually independent, and follow a standard normal distribution under H_0 .



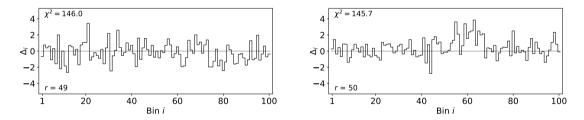
Top row: Background only Bottom row: Background + signal

In these cases, data from the two hypotheses have the same χ^2 value.

Yet, the "eye-ball test" can distinguish between them.

Controlling the Look-elsewhere effect

- Can't limit attention to a specific alternative hypotheses (we aren't given one).
- Instead limit attention to "meaningful deviations".



How are these two images different? Can we capture the intuition in a test statistic?

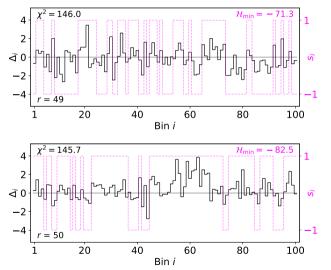
Ising model to capture spatial correlations in Δ_i -s

Associate an Ising spin site with each bin in the histogram.

$$\mathcal{H} = -\sum_{i=1}^{N} \frac{|\Delta_i|\Delta_i}{2} \frac{s_i}{2} - \frac{1}{2} \sum_{i,j=1}^{N} w_{ij} \frac{(\Delta_i + \Delta_j)^2}{4} \frac{1 + s_i s_j}{2} \qquad w_{ij} = \begin{cases} 1, & \text{for nearest neighbors} \\ 0, & \text{otherwise} \end{cases}$$

- The first term tries to align spin s_i with its corresponding deviation Δ_i.
 The greater the value of Δ_i, the greater the reward.
- The second term tries to align spin s_i with the spins s_j of its neighbors.
 - The greater the value of $|\Delta_i + \Delta_j|$, the greater the reward (meaningful deviations).
- Use ground state H_{min} of the system as a test statistic the lower the ground state energy, the greater the deviation from the null hypotheses.
 - Without the second term, $\mathcal{H}_{min} = -\chi^2/4$.
 - The pull from the second term on a spin could conflict with the pull from the first.
 - This effect makes the exact computation of the ground state intractable classically.

The new test statistic in action

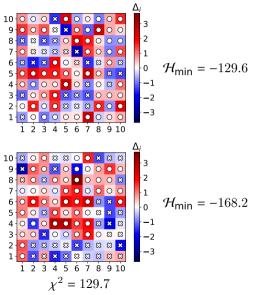


1-dimensional data

- Approximate ground state discovered using simulated annealing.
- Note how some spins are anti-aligned with their deviations.
- *H*_{min} effectively distinguishes between signal and noise of comparable strength.

	χ^2	\mathcal{H}_{min}
Bkg only	146.0	-71.3
Bkg + Sig	145.7	-82.5

The new test statistic in action



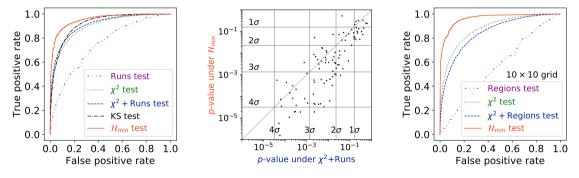
2-dimensional data

- Approximate ground state discovered using simulated annealing.
- Note how some spins are anti-aligned with their deviations.
- *H*_{min} effectively distinguishes between signal and noise of comparable strength.

	χ^2	\mathcal{H}_{min}
Bkg only	129.7	-129.6
Bkg + Sig	129.7	-168.2

ROC curves and *p*-values

The new test outperforms a number of common tests in our simulations.



Summary and outlook

Properties of a good goodness-of-fit test:

- Should exploit the typical differences between statistical noise and plausible real effects
 - Here we leverage spatial correlations.
- Should work with multi-dimensional data
 - New physics signals are likely to be hidden in multi-dimensional distributions.
- \blacktriangleright The detected deviations should be interpretable \checkmark
 - Extremely important in the absence of an alternative hypothesis.

New physics or background systematics?

- Our simulators aren't perfect, especially parts related to non-perturbative QCD (fragmentation, hadronization), and detector response.
- An interpretable test can help understand and remove deficiencies in current generative models and bring down systematic uncertainties — especially important in many HL-LHC analyses expected to be bottlenecked by systematics.

