“Non-Local” Effects from Boosted Dark Matter in Indirect Detection

Steven J. Clark

Brown Theoretical Physics Center
Department of Physics, Brown University

Based Upon:

In Collaboration with:
Kaustubh Agashe, Bhaskar Dutta, and Yuhsin Tsai

May 5, 2020
Detection of dark matter interactions coming from large dark matter densities is one indirect approach.

The flux can be written as follows.

\[
\frac{d\Phi}{dE_\gamma} = \frac{dN}{dE_\gamma} \left\{ \frac{\langle \sigma_{\text{ann}} v \rangle_0}{8\pi m_\chi^2} \times J_{\text{ann}} \right\} \quad \text{(annihilation)}
\]

\[
\frac{d\Phi}{dE_\gamma} = \frac{dN}{dE_\gamma} \left\{ \frac{1}{4\pi m_\chi \tau_{\chi,0}} \times J_{\text{decay}} \right\} \quad \text{(decay)}
\]

The equations are separated into a particle physics portion and an astrophysical part, the J-factor.

\[
J_{\text{ann}} = \int_{\text{ROI}} \int_{\text{los}} \rho^2(r) \, d\ell \, d\Omega
\]

\[
J_{\text{decay}} = \int_{\text{ROI}} \int_{\text{los}} \rho(r) \, d\ell \, d\Omega
\]
The J-factor contains all astrophysical information.
Non-Local Scheme

\[\chi \chi \rightarrow \chi^c_{\text{boost}} + \ldots \]

\[\chi^c_{\text{boost}} + \chi \rightarrow \gamma + \ldots \]

DM halo

extragalactic

S. J. Clark (steven_j_clark@brown.edu) Non-Local Dark Matter Annihilation May 5, 2020
Non-Local Interaction

Features of the Non-Local Mechanism:

- Dark matter particles undergo an interaction event (just like the canonical scenario).
- The products are boosted and transported away from the original interaction sight.
- After traveling a non-negligible distance, the products interact with the local environment.

Some models that naturally incorporate these properties include:

- Semi-annihilation
- Asymmetric
- Forbidden
At low secondary annihilation rates, smaller galaxies experience a larger reduction in their overall rate.
Recall the canonical J-factor ratios.
Non-local J-factor is non-trivially dependent on the second interaction.
Naturally predicts a variation between GCE and dSph signals

\[10^1 \quad 10^2 \quad 10^3 \]

DM mass [GeV]

\[10^{-26} \quad 10^{-25} \quad 10^{-24} \]

\(\sigma v \) [cm\(^3\)/s]

- prof. J & B (this work)
- prof. J (this work)
- Fermi-LAT, measured J-factors (2016)
- Mazziotta et al. (combined)
- Calore et al. 2015 (2\(\sigma \))

Thermal Relic cross section
Steigman et al. 2012

*Calore, Serpico, and Zaldivar – arXiv:1803.05508
Summary

- Canonical J-factors are solely astrophysical
- The non-local mechanism introduces non-trivial scale dependencies
- The non-local mechanism includes multiple scales and reduces to the canonical framework for limiting cases
- One possible consequence of the non-local mechanism is to alleviate GCE/dSph discrepancies
Thank You!
The J-factor of the gamma-ray signal from a galaxy is derived as

$$J_{\text{NL}} = \int_{\text{ROI}} \int_{\text{los}} d\ell \, d\Omega_{\ell} \rho_{1,0}^2 \times \mathcal{P}_{\chi_2^c \chi_2}(|\vec{r}|) \times \frac{dN}{d\Omega}(\vec{r}, \Omega_{\ell}). \quad (3)$$

$\mathcal{P}_{\chi_2^c \chi_2}$ is the probability of χ_2^b annihilating after traveling a displacement \vec{s} from the χ_1 annihilation point

$$\mathcal{P}_{\chi_2^c \chi_2}(r) = \frac{\Lambda \eta_2(r)}{4\pi} \int dq \, d\Omega_q \left[\eta_1(q) \right]^2 \left(\frac{q}{s} \right)^2 \exp \left[-\Lambda \int_0^s ds' \, \eta_2(s') \right] \quad (4)$$

$\frac{dN}{d\Omega}(\vec{r}, \Omega_{\ell})$ accounts for the directional dependence in the signal, a result of the boosted reference frame.
Non-Local Annihilation J-Factor: Limiting $d \gg r_s$ Behavior

In the far away approximation with distance d, the J-factor becomes

$$J_{NL} \approx d^{-2} \int dV \rho_{1,0}^2 \times P_{\chi^c_2\chi_2}(\vec{r}).$$ \hspace{1cm} (5)

$\frac{dN}{d\Omega}(\vec{r}, \Omega_\ell)$ no longer appears in the large d approximation as interior annihilation angles are averaged out over the entire galaxy resulting in spherical symmetry.

In the limit $d \gg r_s$, the canonical J-factors can also be reduced.

$$J_{\text{ann}} \approx d^{-2} \int dV \rho^2(r) \quad J_{\text{decay}} \approx d^{-2} \int dV \rho(r)$$ \hspace{1cm} (6)
Recall Eq. (4),

\[\mathcal{P}_{\chi_2^c\chi_2}(r) = \frac{\Lambda \eta_2(r)}{4\pi} \int dq \, d\Omega_q \, [\eta_1(q)]^2 \left(\frac{q}{s}\right)^2 \exp \left[-\Lambda \int_0^s ds' \, \eta_2(s')\right] \]

At \(\Lambda \gg 1 \), we recover canonical annihilation as \(\chi_2^c \) is unable to travel far.

\[\mathcal{P}_{\chi_2^c\chi_2}(r) \approx [\eta_1(r)]^2 \quad J_{NL} \approx d^{-2} \int dV \, [\rho_1(r)]^2 \quad (7) \]

At \(\Lambda \ll 1 \), \(\chi_2^c \) have a very low chance of annihilation within the galaxy.

\[\mathcal{P}_{\chi_2^c\chi_2}(r) \approx \frac{\Lambda \eta_2(r)}{4\pi} \int dq \, d\Omega_q \, [\eta_1(q)]^2 \left(\frac{q}{s}\right)^2 \quad (8) \]

Furthermore, if most \(\chi_1 \) annihilation occurs in a central core, then \(q \ll r \) for relevant regions, and \(s \to r \)

\[J_{NL} = c_1 \, d^{-2} \Lambda \int dr \, \eta_2(r) \int q^2 dq \, d\Omega \, \rho_1^2(q) = c_2 \Lambda \, d^{-2} \int dV \, \rho_1^2(q) \quad (9) \]