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Direct Detection of Sub-GeV Dark Matter

* Not enough energy 1n nuclear recoils !
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* Look for 1onization/photon signals:

>DM-electron recoil
>DM-nucleus recoil with Bremsstrahlung
>DM-nucleus recoil with a Migdal electron
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DM-electron recoil

e Can probe DM-electron interactions for sub-GeV Dark Matter

* All the energy of the incoming DM particle can in principle be converted
to electron recoil.

» The transition probability from electronic state ‘Z> to electronic state ‘f >
1s proportional to,

(ile's>[f)[

where 4 1s the momentum lost by the dark matter particle.



DM-nucleus recoil with a Migdal electron

* Can probe DM-nucleon interactions for sub-GeV Dark Matter

* All the energy of the incoming DM particle can in principle be converted
to electron 1onization.

* The transition probability from electronic state ‘Z> to electronic state ‘f>
1s proportional to,

(ile’ae>| )

Me .
—) q , 9 being the momentum lost by dark matter.
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Migdal effect 1n 1solated atoms

* Bound, initial state of the electron: |7, 1)
n.: Principal quantum number, /: Orbital quantum number

» Positive energy final state in a continuum: |pe, ")
p, : Final momentum, /": Final angular momentum, E,: Final energy
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The Ionization Form Factor

— 5S (x103)
- 5P (x10%)

dipole approx.
holds

 The 10nization form factor i1s

defined in the DM-electron
scattering literature

For a direct DM-electron scatter,
the form factor 1s evaluated at 4,
the momentum lost by the dark
matter particle

For Migdal effect, the form factor 1s
evaluated at a suppressed

Me
momentum Qe ~ (_)q
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Cross sections

doy, do y L dpni-E.
dEgrdE. dbgr 27  dE,

/ N\

DM-Nucleus Ionization
Cross section probability
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Compare with
DM-electron ! '
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Comparison between Migdal and DM-
electron scattering
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* Any direct comparison 1s model-
dependent (Dark photon model
assumed here)

* For heavy dark photon, DM-

electron dominates for low masses
(<~100 MeV) and Migdal
dominates for heavier masses

* For ultralight dark photon, DM-
electron dominates for all masses
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Extension to semiconductors

* Analogous to the 1solated atoms case, we have a crystal form factor in
the case of semiconductors

2 2
‘ fcrystal (p€7 Q) ‘ - ‘ fcrystal (pea Qe) }
DM-¢lectron Migdal

!

Evaluate the form factor at the
suppressed momentum scale
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Constraints and projections
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Comparison shows that the Migdal
dominates DM-electron scattering
for high masses 1n the case of
contact interactions
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Summary and outlook

* The Migdal effect allows the noble liquid and semiconductor
experiments to extend the sensitivity of DM-nuclear interactions into

MeV mass region

* The theoretical description of Migdal effect is tied very closely to that
of DM-electron scattering

* For dark photon model, Migdal effect dominates DM-electron
scattering for higher masses in the case of contact interactions

* Future work: A more solid formulation of the Migdal effect in
semiconductors and limits from various other experiments.



