Collider signatures of multicharged vectorlike leptons

Nilanjana Kumar

University of Delhi, India (nilanjana.kumar@gmail.com)

Phenomenology 2020 Symposium University of Pittsburgh Pittsburgh, May 5, 2020

based on arXiv:1912.03990

Vector-like leptons:some facts

- Vector like leptons occur in extensions of SM, TeV-scale see- saw neutrino masses, little Higgs, minimal technicolor....
- Can address anomaly in muon anomalous magnetic moment measurements [1305.3522] and LFU violation [1705.07007]...
- ► Neutral component of the VLL multiplet can be a DM candidate [1812.06505]
- \blacktriangleright Couples with SM vector bosons and leptons \rightarrow Multilepton final states [1510.03456]

$$L^{\pm} \rightarrow (W^{\pm}\nu), (ZI^{\pm}), (HI^{\pm})$$

✓ Current limit by CMS [1905.10853] Multilepton search
✓ VLL in the mass range of 120–790 GeV, is excluded at 95% confidence level if couples with third generation SM leptons.

Different VLL Models:

- ► Multicharged VLL appears in warped space [0806.0350] or models of Compositeness [1001.5151]
- Decays to a W boson and a charged lepton leading to a clean same-sign di-lepton final state[1404.2375].

$$L^{\pm\pm} \rightarrow (W^{\pm}I^{\pm})$$

Presence of charged Higgs, different VLL signature [2002.12218].

$$L^{\pm\pm} \rightarrow (H^{\pm}I^{\pm}), ((\nu I^{\pm})I^{\pm})$$

 $\delta M(mH,L) \to \text{small}$, implied from muon (g-2) $\to \text{soft}$ leptons. If $(\mu - \tau)$ is a symmetry, final state is $(\mu^+\mu^-)(l^+l^-)$

Photon fusion is important for the multicharged VLL \rightarrow increase in cross section.

A particular multicharged VLL Model:

	Lepton Fields			Scalar Fields			
	L_L	e_R	Σ_R	Н	Φ ₇	Φ ₅	Φ ₄
$SU(2)_L$	2	1	5	2	7	5	4
$U(1)_Y$	$-\frac{1}{2}$	-1	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$

$$\mathbf{\Phi_4} = \left(\varphi^{++}, \varphi_2^+, \varphi^0, \varphi_1^-\right)^T, \qquad \mathbf{\Sigma_R} = \left[\boldsymbol{\Sigma}_R^{++}, \boldsymbol{\Sigma}_R^+, \boldsymbol{\Sigma}_R^0, \boldsymbol{\Sigma}_L^{+c}, \boldsymbol{\Sigma}_L^{++c}\right]^T$$

 Φ_4 can be inert and hence the neutrino mass matrix is induced at one-loop level \to small neutrino mass.

H, Φ_7 and Φ_5 have nonzero vev and satisfy ho=1

Couplings of doubly charged VLL's:

Gauge interaction:

$$\bar{\Sigma}_R \gamma^\mu i D_\mu \Sigma_R \supset \bar{\Sigma}^{++} \gamma^\mu \left(2eA_\mu + 2gc_W Z_\mu \right) \Sigma^{++} + \bar{\Sigma}^+ \gamma^\mu \left(eA_\mu + gc_W Z_\mu \right) \Sigma^+ + ..$$

Yukawa interaction:

$$-\mathcal{L}\supset (y_{\nu})_{ij}\;\bar{\nu}_{L_i}\Sigma^{++}_{R_j}\varphi^{--}+\bar{\ell}_{L_i}\Sigma^{++c}_{L_j}\varphi^+_2+..$$

 \rightarrow explains LFV's and muon (g-2).

Kinetic term:

$$\begin{split} |D_{\mu}\Phi_{4}|^{2} \supset i\sqrt{\frac{3}{2}}gW_{\mu}^{-}(\partial^{\mu}\varphi_{2}^{-}\varphi^{++} - \partial^{\mu}\varphi^{++}\varphi_{2}^{-}) \\ + i\sqrt{2}gW_{\mu}^{-}(\partial^{\mu}\varphi^{0*}\varphi_{2}^{+} - \partial^{\mu}\varphi_{2}^{+}\varphi^{0*}) + \dots \end{split}$$

Potential:

$$V \supset \lambda_0 [H^{\dagger} \tilde{\Phi}_0 H H] + ...$$

Decay channels of VLL's:

$$\Sigma^{\pm\pm} \to \ell^\pm \varphi_2^\pm \to \ell^\pm W^{\pm*} \varphi^0 \to \ell^\pm W^{\pm*} \textit{hh}$$

$$\Sigma^{\pm\pm} \rightarrow \nu \varphi^{\pm\pm} \rightarrow \nu W^{\pm*} \varphi_2^+ \rightarrow \nu W^{\pm*} W^{\pm*} \varphi^0 \rightarrow \nu W^{\pm*} W^{\pm*} \textit{hh}$$

BP's after satisfying the LFV, neutrino mass and also muon (g-2).

_	BP1	BP2	BP3	
<i>V</i> 5	1.44	1.44	1.44	
V ₇	0.748	0.748	0.748	
$(y\nu)_{11}$	-0.424903 - 0.433832i	-0.211747 + 0.0786788i	0.451545 + 0.281382i	
$(y\nu)_{21}$	-0.515018 + 0.294156i	-0.174239 - 0.404063i	-0.455368 - 0.660787i	
$(y\nu)_{31}$	-0.674845 + 0.282308i	0.218317 — 0.045373 <i>i</i>	1.17154 - 0.229787i	

Simplified scenario, BR(
$$\Sigma^{\pm\pm} \to \ell^{\pm} \varphi_2^{\pm}$$
) = ($\Sigma^{\pm\pm} \to \nu \varphi^{\pm\pm}$) $\sim 50\%$

Production Cross section:

The inclusion of the photon PDF increases the signal cross section significantly as the coupling is proportional to the charge of the fermion.

If VLL mass is 1 TeV, $\sigma \times BR(I^+W^+hh,\ I^-W^-hh) \rightarrow (I^+I^+)(I^-I^-)(hhhh) + MET \sim 0.06 \text{ fb}$ Small cross section but background free.

Event Selection and Reconstruction:

At least 4 b-jets, coming from the Higgs and at least one of the two oppositely charged lepton pairs. Pairing of the b-jets to identify leading and subleading Higgs [1804.06174]

$$\begin{array}{l} \frac{360}{m_{4b}} - 0.5 < \Delta R_{bb} ({\rm leading}) < \frac{653}{m_{4b}} + 0.475 \\ \frac{235}{m_{4b}} < \Delta R_{bb} ({\rm subleading}) < \frac{875}{m_{4b}} + 0.35 \end{array}$$

$$p_{T_{\ell_1}} > 40$$
, $p_{T_{\ell_2}} > 20$, $\eta_{\ell} < 2.5$, $p_{T_b} > 40$, $\eta_b < 2.5$, $\Delta R(I, I) > 0.4$, $\Delta R(I, b) > 0.4$.

Event Selection and Reconstruction:

Finally we select the events that satisfy,

$$(M_H - 15) \text{GeV} < M_{2b} < (M_H + 15) \text{ GeV} (M_{\varphi^0} - 200) \text{ GeV} < M_{4b} < (M_{\varphi^0} + 200) \text{ GeV}$$

Prediction:

The required luminosity to observed at least 10 events in 4b + 1l channel. In $4b + l^+l^-$ lepton the required luminosity is higher.

Conclusion:

- A more dedicated analysis is to be done in alternative channels of VLL's.
- ► The result highly depends on the b-tagging at the detector. At heavy VLL mass the objets will be highly boosted.
- Prospect for discovery and/or exclusion will be much better at 27 TeV.
- ▶ In general, study of VLL in different channels at LHC might give us glimpses of new physics.

extra1

Table: Number of expected events at 150 fb^{-1} , 300 fb^{-1} and 3000fb^{-1} at 14 TeV p-p collision in different channels.

\geq 4 bjets \geq 1 (I)	M_{φ_R} (GeV)	$\sigma(fb)$	N (150 fb ⁻¹)	$300 \; fb^{-1}$	$3000 \ fb^{-1}$
	600	5.1	4.9	9.7	97
	700	2.5	2.3	4.6	45
	800	1.6	1.4	2.8	28
\geq 4 bjets + 1 ($I^{+}I^{-}$)					
	600	5.1	4	8	81
	700	2.5	2	4	40
	800	1.6	1.2	2.4	24