## Post-inflationary Production of Light Dark Sectors



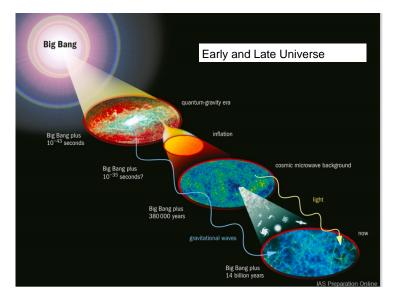
Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati Anish Ghoshal

Laboratorie Nazionale di Frascati - INFN Tor Vergata - INFN Italy

anishghoshal1@protonmail.ch

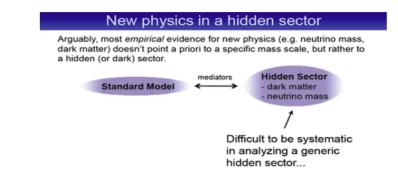
May, 2020 Pittsburgh




イロト イヨト イヨト イヨト

- EPJC volume 79, 818 (2019)

- Light Dark Sectors in Particle Physics
- (P)reheating the Universe after Inflation
- Sterile Neutrinos & Cosmological Bounds
- Dark Matter Production
- Conclusion


イロト イヨト イヨト イヨト

## History of the Universe



< □ > < □ > < □ > < □ > < □ >

Many motivated particle physics scenarios requires such bosonic mediators: sterile neutrinos, thermal and non-thermal dark matter, asymmetric dark matter.....

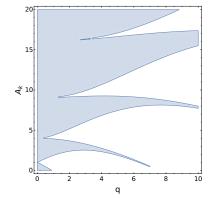


< □ > < 同 > < 回 > < 回 >

#### • Cosmic Inflation:

- Accelerated expansion of universe to solve Horizon problem, Flatness problem, generate initial seed fluctuation to explain structure formation
- Candidate: a Scalar field known as the Inflaton.
- Post-inflationary Dynamics:
  - After slow-roll ends, inflaton field oscillates around the minima of potential
  - Energy density of oscillating inflaton field evolves as matter  $\sim 1/a^3$  for quadratic inflation
  - Oscillating inflaton field is interpreted as collection of stationary inflaton particles which decay **perturbatively** Reheating
- Preheating:
  - Non-perturbative production of particles from the classical oscillation of the inflaton field.
  - Any field  $\chi$  can be decomposed into fourier modes,

$$\chi(t,x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left( a_k \chi_k e^{-ik.x} + a_k^{\dagger} \chi_k^* e^{ik.x} \right)$$


• Dynamics of the modes  $\chi_k$  of a field  $\chi$  are given by Mathieu Equation -

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

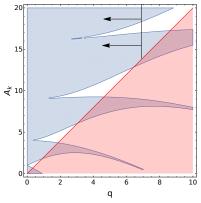
(where  $z = m_{\phi}t$ ,  $q = \frac{\lambda_{\phi\chi}\Phi^2}{4m_{\phi}^2}$ ,  $A_k = \frac{k^2}{m_{\phi}^2a^2} + 2q$ , a=Scale factor, t=time,  $\Phi$ =Amplitude of  $\phi$  oscillation, the potential is  $\frac{1}{2}m_{\phi}^2\phi^2 + \frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$ )

イロト 不得 トイヨト イヨト 二日

## Mathieu instability bands



• Oscillatory solution in (blue), exponentially growing solution in (white) regions.

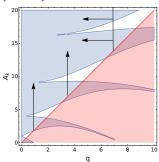

- Growing modes are interpreted as particle production during inflation.
- For some q, lowest  $A_k$  has highest exponent of growing exponential particle production.

• • • • • • • • • • • •

#### Identifying Growing modes with time

• 
$$q = rac{\lambda_{\phi\chi}\Phi^2}{4m_\phi^2}$$
,  $A_k = rac{k^2}{m_\phi^2a^2} + 2q_k$ 

- $\frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$ -term acts as an inflaton effective mass  $m_{\phi}^{eff} = \sqrt{m_{\phi}^2 + \lambda_{\phi\chi}\langle\chi^2\rangle}$ .
- So, with time  $\Phi$  decreases and  $m_{\phi}^{e\!f\!f}$  increases, resulting a decrement in q.
- Growing modes bands get narrower; lower momentum modes become growing modes.

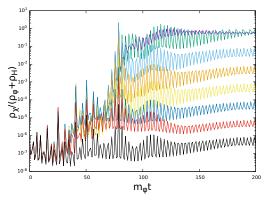



イロト イヨト イヨト イヨ

# Effect of Quartic self-interaction of $\chi$

Let's pretend this slide is absent for the time being !

- $\lambda_{\chi}\chi^4$  gives rise to effective mass term of  $\chi$ ,  $m_{\chi}^{eff} = \sqrt{\lambda_{\chi} \langle \chi^2 \rangle}$ .
- $A_k$  gets modified into  $A_k = \frac{k^2}{m_{\phi}^2 a^2} + \frac{m_{\chi}^2}{m_{\phi}^2} + 2q.$




- Blocks lower momentum modes to come into play Quartic Blocking.
- It becomes more difficult to produce  $\chi$ -particles with larger  $\lambda_{\chi}$ -values.

・ロト ・日下・ ・ ヨト・

#### Let's pretend this slide is absent for the time being !

- As time goes and the fluctuations grow, these effects begin to show up, Mathieu equation becomes insufficient to describe the preheating dynamics
- Numerical simulations become important to get accurate dynamics
- We use publicly available code LATTICEEASY for the simulation



• Transfer of energy density with growing values of  $\lambda_{\chi} = 10^{-7} - 1$ .

• • • • • • • • • •

## Scenario: Sterile Neutrino Sector

- Neutrino oscillation: Neutrinos can change flavour
- A flavour eigenstate is linear combination of mass eigenstates (which evolve in time as hamiltonian eigenstates)

$$egin{aligned} &|
u_lpha>=\sum_{k=1}^3U^*_{lpha k}|
u_k>\ &
u_lpha(t)>=\sum_{k=1}^3U^*_{lpha k}\mathbf{e}^{-i\mathcal{E}_k t}|
u_k>\end{aligned}$$

Probability of detecting another flavour at time t,

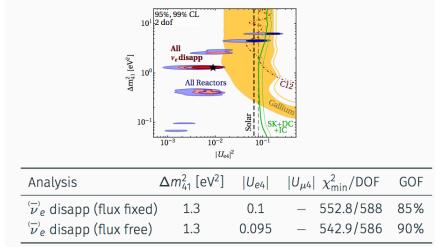
$$P_{\nu_{\alpha} \to \nu_{\beta}} = | < \nu_{\beta} | \nu_{\alpha}(t) > |^{2} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} e^{-i(E_{k} - E_{j})t}$$

• For relativistic neutrinos,

$$E_{i} = \sqrt{|\overrightarrow{p}|^{2} + m_{i}^{2}} \approx |\overrightarrow{p}| + \frac{m_{i}^{2}}{2|\overrightarrow{p}|}$$
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta}{2|\overrightarrow{p}|}t\right)$$

⇒ Neutrino Oscillation (depends on momentum and mass squared difference)

イロン イロン イヨン イヨン


- Small Baseline Experiments:
  - LSND and MiniBooNE observed excess in  $ar{
    u}_{\mu} 
    ightarrow ar{
    u}_{
    m e}$  channel
  - ${\scriptstyle \bullet}$  MiniBooNE have also indicated an excess of  $\nu_e$  in the  $\nu_\mu$  beam
- Within a 3+1 framework, MiniBooNE result hints towards the existence of a sterile neutrino with eV mass at  $4.8\sigma$  significance, which raises to  $6.1\sigma$  when combined with the LSND data
- $\bullet$  Daya Bay, NEOS, DANSS and other reactor experiments probed the  $\nu_e$  disappearance in the  $\bar{\nu}_e \to \bar{\nu}_e$  channel
- ullet GALLEX ,SAGE have performed similar measurements in the  $\nu_e \rightarrow \nu_e$  channel
- Caution:  $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$  appearance in LSND and MiniBooNE are in tension with strong constraints on  $\nu_{\mu}$  disappearance, mostly from MINOS and IceCUBE, while attempting to fit together using a 3+1 framework
- Although debatable in 3+1 framework, such a light additional sterile neutrino, with mixing  $\sin \theta \lesssim \mathcal{O}(0.1)$  with the active neutrino species, can be consistent with constraints from various terrestrial neutrino experiments

= 900

イロト イポト イヨト イヨト

# Neutrino Anomaly

The global picture:



MD, HERNÁNDEZ-CABEZUDO, KOPP, MACHADO, MALTONI, MARTINEZ-SOLER, SCHWETZ, "UPDATED GLOBAL ANALYSIS OF NEUTRINO OSCILLATIONS IN THE PRESENCE OF EV-SCALE STERILE NEUTRINOS," JHEP, 2018

• • • • • • • • • • • •

Cosmology for this extra eV-scale sterile neutrino can be parameterized by 2 main parameters:

**1** Total mass of neutrinos  $\sum m_{\nu_i}$ 

$$\Omega_{\nu} = \frac{\sum m_{\nu_i} n_{\nu,0}}{\rho_{cr,0}} = \frac{\sum m_{\nu_i}}{eV} \frac{1}{94.1(93.1)h^2}$$

**②** Effective number of neutrinos  $N_{\rm eff}$   $N_{\rm eff}$  affects cosmology through -

$$\rho_R = \rho_\gamma \left( 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$

These equations assume thermalization of the neutrino species. We will next look into the  $N_{\rm eff}$  bounds from BBN, CMB & LSS observations.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• The bounds (from Big Bang Nucleosynthesis, Cosmic Microwave Background & Large Scale Structure) summarized:

 $riangle N_{
m eff} \lesssim 0.5$ 

 $\sum m_{\nu_i} < 0.16 \ eV \ (PLANCK \ TT + Low \ E + BAO)$ 

Conclusion from Standard Cosmology-

Extra neutrino species needed by particle physics is not allowed in cosmology if thermalized

Rescue: If sterile neutrinos involve light dark sectors generating secret interactions within them, they help to relax the bounds.

< □ > < □ > < □ > < □ > < □ >

• Saving Sterile Neutrino: Archidiacono et. al. (2014) showed that adding a pseudoscalar interaction can solve the tension -

$$\mathcal{L} \sim g_s \chi \overline{\nu}_s \gamma_5 \nu_s$$

- MSW like potential induced by new interaction with  $10^{-4} \gtrsim g_s \gtrsim 10^{-6}$  suppress sterile neutrino production by suppressing mixing angle until after neutrino decoupling, thus not letting it thermalise with plasma
- At late time, annihilation of  $\nu_s$  to  $\chi$  particles with chosen  $m_\chi \lesssim 0.1 {\rm eV}$  can evade the mass bound of neutrinos
- $\bullet\,$  From supernova energy loss argument  $g_s \lesssim 10^{-4}$
- Similar results with vector interactions (Dasgupta et. al. (2013)).

Key Assumption: Primoridal density of  $\chi$  bosons needs to be negligible to avoid these constraints.

E AQA

イロト イボト イヨト イヨト

## Problem with this model

We investigate from the inflationary epoch

Assume  $\phi$  as inflaton with quadratic potential  $\downarrow$ Constrain  $n_s - r$  parameters from PLANCK  $\downarrow$ Produce  $\chi$  and H by Preheating  $\downarrow$ Study energy density of  $\chi$  and H  $\downarrow$   $\nu_s$  production through  $\chi\chi \rightarrow \nu_s\nu_s$   $\downarrow$ error the product of  $\chi_s$  and  $\mu_s$  (console

Understand the parameter space allowed by Cosmology

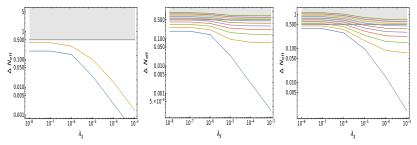
- A pseudoscalar  $\chi$  coupled to the inflaton gets produced copiously during preheating
- $\bullet\,$  Such an extra relativistic species in direct conflict with  $N_{\rm eff}$  bounds.
- Need to suppress production of  $\chi$  from preheating Quartic Blocking.

Now let's go back to the earlier slides we pretended to be absent !

(日)

#### Potential and Parameter Choice

• The scalar potential is,


$$V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{\lambda_H}{4}|H|^4 + \frac{\sigma_{\phi\chi}}{2}\phi\chi^2 + \frac{\sigma_{\phi H}}{2}\phi|H|^2 + \frac{\lambda_{\phi\chi}}{2}\phi^2\chi^2 + \frac{\lambda_{\phi H}}{2}\phi^2|H|^2 + \frac{\lambda_{\chi H}}{2}\chi^2|H|^2$$

- Parameter choices:  $m_{\phi} = 10^{-6} \text{ M}_{\text{pl}}$  (successful inflation with small non-minimal coupling to gravity  $\mathcal{O}(10^{-3})$ )  $\lambda_{\phi} = 10^{-14}$  (even if kept 0, will be generated through RGE)  $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}, 10^{-6}$  ( $\gtrsim 10^{-8}$  for efficient preheating, higher value can ruin inflation)  $\sigma_{\phi H} = 10^{-10}$  and  $10^{-8} \text{ M}_{\text{pl}}$  (to show two scenarios, one with a non-relativistic phase and one without)  $\lambda_{H} = 10^{-7}$  and  $10^{-4}$  (to keep minima of potential at 0,0,0 in field space, avoiding any additional mass term for  $\chi$  or H)  $\sigma_{\phi\chi}$  neglected (to avoid additional  $\chi$  population during decay of  $\phi$ )  $\lambda_{\chi H}$  neglected (to avoid thermalisation between  $\chi$  and H)  $\lambda_{\chi}$  kept variable to suppress  $\chi$  production variably
- Isocurvature bounds ( $m_H, m_\chi > H$  during inflation) are trivially satisfied for parameter choice of  $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}$

イロト 不得 トイヨト イヨト 二日

# $\triangle N_{\rm eff}$ contribution from $\chi$ produced in (p)reheating

Some Results:



- $\lambda_H = 10^{-7}$  &
- $\sigma_{\phi H} = 10^{-10} M_{Pl}$ .
- $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}, 10^{-6}$  from bottom to top left panel.
- Central panel: λ<sub>φχ</sub> = λ<sub>φH</sub> = 10<sup>-7</sup>, when a fraction of the inflaton φ (in decreasing order from bottom to top) decays into χ respectively.
- Right panel: Same as central panel but with  $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-6}$ .

3

< □ > < □ > < □ > < □ > < □ >

The case for Dark Matter:

- Non-thermal Production of Dark Matter from inflationary (p)-reheating.
- No well-established Detection of DM yet - points towards feeble DM SM interactions.
- To keep in mind:
  - Right DM relic, i.e.  $\rho_\chi/\rho_{\rm SM}=5.3~{\rm now}$
  - BBN bounds on extra relativistic species, i.e.  $ho_\chi/
    ho_{SM}\lesssim$  0.051 during BBN
  - Isocurvature bounds

- "Non-thermal production of Dark Matter after Inflation", JCAP (December 2018)

= nac

イロト イヨト イヨト イヨト

- Particle production of scalar fields during (p)reheating can be suppressed with a quartic self interaction term.
- Sterile Neutrino
  - A sterile neutrino (with eV mass and size-able mixing with active neutrinos) is required to solve neutrino anomalies
  - This species, if thermalised with SM, is highly constrained by  $N_{\rm eff}$  bounds from BBN, CMB & LSS.
  - Secret interaction with  $\chi$  blocks  $\nu_s$  production from  $\nu_{active}$  but new production channel opens through  $\chi\chi \rightarrow \nu_s \nu_s$ .
  - $\bullet\,$  To suppress this production channel,  $\chi$  needs to be of sub-dominant energy-density after (p)reheating.
  - This can be achieved through Quartic blocking.

#### Non-thermal Dark Matter

- Production of DM during (p)reheating is novel mechanism.
- However there is huge transfer of energy density from the inflaton sector to the dark sector.
- In order to satisfy the relic, Quartic blocking and/or late inflaton decay into H giving rise to a non-relativistic phase & subsequent non-standard evolution like cannibalism, etc. is required.

イロト イポト イヨト イヨト

# Thank You



2

・ロト ・四ト ・ヨト ・ヨト

# Backup:Suppressed Production

$$\rho = \frac{1}{2} f_0 \begin{pmatrix} P_a & P_x - iP_y \\ P_x + iP_y & P_s \end{pmatrix}, \tag{32}$$

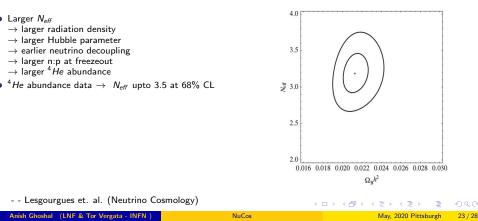
where  $f_0$  is the Fermi-Dirac distribution function. The QKEs are now

$$\begin{split} \dot{P}_{a} &= V_{x}P_{y} + \Gamma_{a}\left[2 - P_{a}\right], \\ \dot{P}_{s} &= -V_{x}P_{y} + \Gamma_{s}\left[2\frac{f_{\mathrm{eq},s}(T_{\nu_{s}},\mu_{\nu_{s}})}{f_{0}} - P_{s}\right], \\ \dot{P}_{x} &= -V_{z}P_{y} - DP_{x}, \\ \dot{P}_{y} &= V_{z}P_{x} - \frac{1}{2}V_{x}(P_{a} - P_{s}) - DP_{y}. \end{split}$$

and the potentials are:

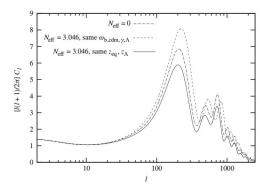
$$egin{aligned} V_x&=rac{\delta m_{
u_s}^2}{2p}\sin2 heta_s,\ V_z&=-rac{\delta m_{
u_s}^2}{2p}\cos2 heta_s-rac{14\pi^2}{45\sqrt{2}}prac{G_F}{M_Z^2}T^4n_{
u_s}+V_s, \end{aligned}$$

2


イロン イロン イヨン イヨン

# Big Bang Nucleosynthesis (BBN)

 Before nucleosynthesis protons and neutrons were in equilibrium by weak interactions through active neutrinos &


$$\frac{n}{p} = \exp\left(\frac{-\bigtriangleup m}{T}\right)$$

- When  $\sigma \sim H$ , neutrinos decouple and n:p ratio freezes out.
- Nucleosynthesis (production of light neuclei <sup>2</sup>H, <sup>3</sup>He, <sup>4</sup>He, <sup>7</sup>Li from neutron and proton) happens
- Neutrons are unstable  $\rightarrow$  only primordial n's present today are preserved in atoms mostly in  ${}^{4}He$

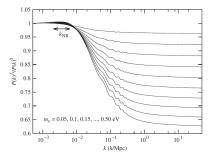


# Cosmic Microwave Background (CMB)

- Larger  $N_{eff}$ 
  - $\rightarrow$  larger radiation density
  - $\rightarrow$  later matter radiation equality
  - $\rightarrow$  less time between equality and photon decoupling
  - $\rightarrow$  smaller sound horizon
  - $\rightarrow$  CMB TT peaks at higher I values with higher peak heights
- From CMB Power-Spectrum, analysing Planck data with  $\Lambda CDM + N_{eff}$  7 parameters one can constrain  $N_{eff}$



- - Lesgourgues et. al. (Neutrino Cosmology)


# Large Scale Structure (LSS)

• In linear scalar perturbation theory, modes evolve as -

$$\delta_i^{\prime\prime} + \frac{a^\prime}{a} \delta_i^\prime + \left(k^2 - \frac{3a^2\mathcal{H}^2}{c_s^2}\right) c_s^2 \delta_i = 0$$

- $\bullet$  Neutrino density enters the equation through  ${\cal H}$  and  ${\cal H}^2$  term by Friedman equation
- A freestreaming length can be defined under which length scale the perturbation is suppressed -

$$\lambda_{fs}(\eta) = a(\eta) \frac{2\pi}{k_{fs}} = 2\pi \sqrt{\frac{2}{3}} \frac{c_{\nu}(\eta)}{\mathcal{H}(\eta)}$$



- - Lesgourgues et. al. (Neutrino Cosmology)

Evolving Boltzmann Equation:

$$\begin{split} \left(\frac{\partial}{\partial t} - HE\frac{\partial}{\partial E}\right) f_{\nu_s}(E,t) &= C_{\chi\chi \longrightarrow \nu_s \nu_s} \\ &+ \frac{1}{2} \sin^2(2\theta_M(E,t)\Gamma(E,t)) \\ &\times f_a(E,t) \end{split}$$
(15)

$$\sin^2(2 heta_M) = rac{\sin^2(2 heta_0)}{\left(\cos(2 heta_0)+rac{2E}{\delta m^2}V_{eff}
ight)^2+\sin^2(2 heta_0)}$$

$$V_{\rm eff}^{\rm bubble} = -\frac{7\pi^2 g_s^2 E T_\chi^4}{180 m_\chi^4}$$

2

メロト スピト メヨト メヨト

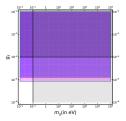



Figure: The blue and magenta regions correspond to the allowed regions in  $m_{\chi} - g_s$  plane from  $N_{\rm eff}$  constraints of BBN ( $\Delta N_{\rm eff} \lesssim 0.5$ ) for  $\theta_0 = 0.1$  and 0.05

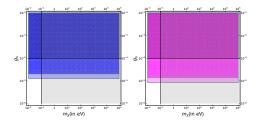



Figure: The region with lighter shade corresponds to the allowed region from  $N_{\text{eff}}$  constraints of BBN (for  $\Delta N_{\text{eff}} \leq 0.5$ ). The region with darker shade is the new bound, if  $\chi$  being produced during (p)reheating leads to a  $\Delta N_{\text{eff}} = 0.4$ . Left and right panels correspond to  $\theta_0 = 0.1$  and 0.05. May 2020 Pittsburgh 27/28 May 2020 Pittsburgh 27/28

# $\Delta N_{\rm eff}$ contribution from $\chi$ produced in (p)reheating

#### Some Results:

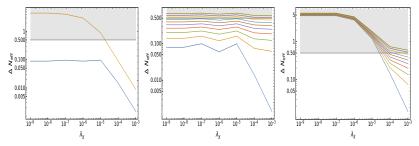



Figure:  $\lambda_H = 10^{-4}$ ,  $\sigma_{\phi H} = 10^{-8} M_{Pl}$ ,  $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$ ,  $10^{-6}$  from bottom to top for the left panel. Plots in the centre and right panels correspond to the cases  $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$ ,  $10^{-6}$ , when a fraction of the inflaton (0 to 0.1 in steps of 0.01, from bottom to top) decays into  $\chi$  respectively.

イロト イヨト イヨト イヨト