LHC Update New Results, New Techniques, New Ideas

Jianming Qian University of Michigan Email: qianjATumichDOTedu (On behalf of the ATLAS and CMS Collaborations)

Disclaimer and Apologies

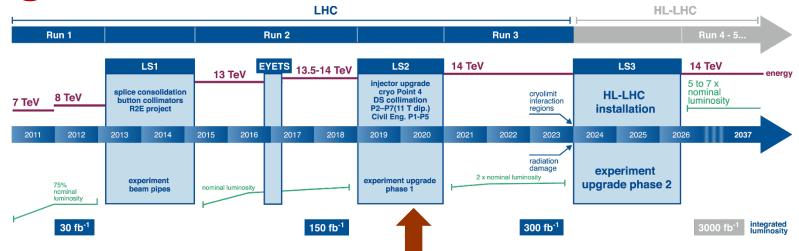
Symposium organizers wish for a somewhat different talk than those given at previous symposia, focusing more on new ideas and techniques...

This talk is divided in two parts:

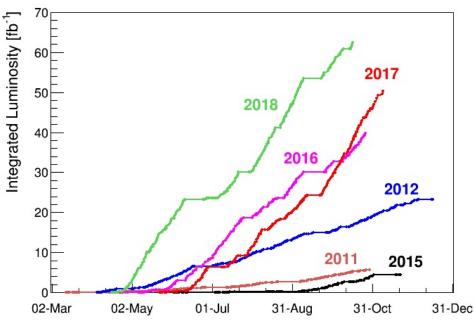
- Highlight a few recent results
 - Latest Higgs results
 - Observations of di-boson and tri-boson processes

(My apologies for the injustice to many other new results. Please do listen to other talks on LHC results at this symposium.)

Discuss a few results from new ideas


 or using new techniques, new at least at the time.
 (Some results are not really new, as it takes time to
 perfect techniques and to bring ideas to fruition.)

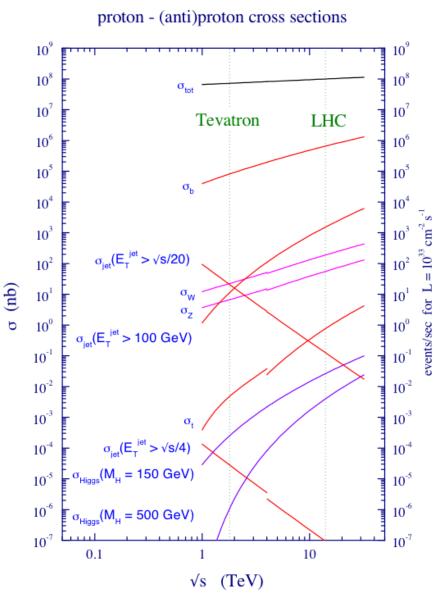
PHENO 2010 Symposium


Jianming Qian

(My last Pheno 😕)

Large Hadron Collider

Here we are

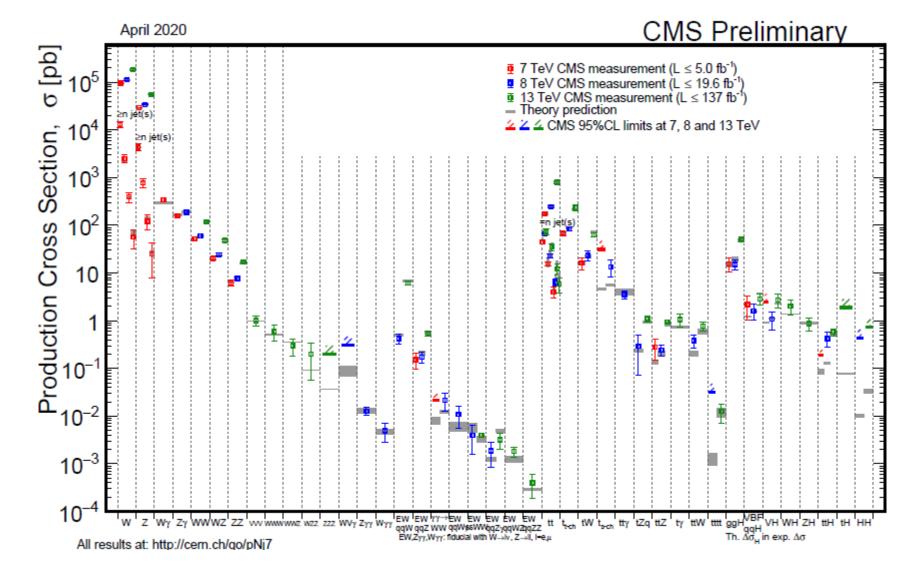

Luminosities/experiment delivered:

~ 5 fb⁻¹ @
$$\sqrt{s} = 7$$
 TeV
~ 20 fb⁻¹ @ $\sqrt{s} = 8$ TeV
~ 150 fb⁻¹ @ $\sqrt{s} = 13$ TeV

Only ~ 5% of the luminosity envisioned for (HL-)LHC

Tremendous potential for increasing statistics, limited potential for increasing energy.

Proton-Proton Collision Physics


We are blessed to have a successful theory called the Standard Model.

LHC explores physics over 10+ order of magnitude in rates.

Every process matters:

- Known known processes for calibration and for precision measurements
- Known unknown processes to test Standard Model
- Unknown processes to search for BSM physics

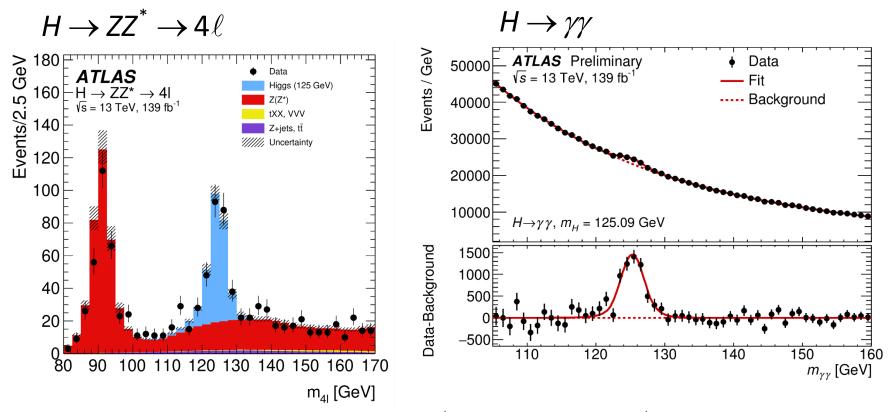
Standard Model Processes

Standard Model is alive and well

Examples of Limits (SUSY Searches)

ATLAS SUSY Searches* - 95% CL Lower Limits

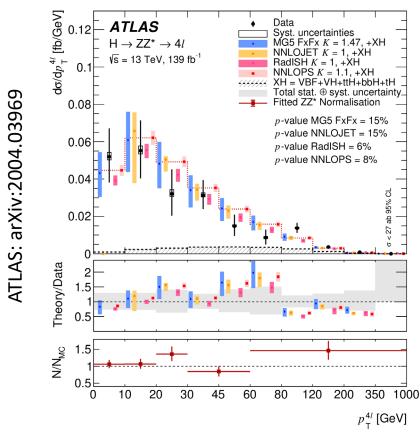
ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

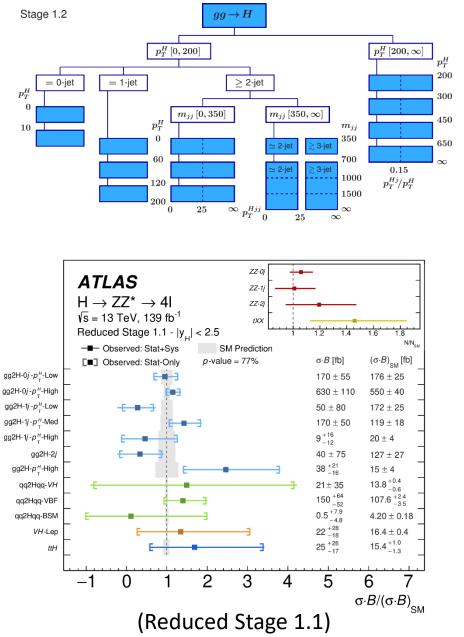

October 2019

	Model	Si	ignatur	e ∫.	<i>L dt</i> [fb ⁻) Ma	ss limit					Reference
s	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [10× Degen.] <i>q</i> [1×, 8× Degen.] 	0.43	0.71		1.9	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{q})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
Inclusive Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	$E_T^{\rm miss}$	139	٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢ ٢		Forbidden	1.	2.35 15-1.95	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 е, µ ее, µµ	4 jets 2 jets	$E_T^{\rm miss}$	36.1 36.1	i20 20			1.2	1.85	$m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV	1706.03731 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq W Z \tilde{\chi}_1^0$	0 e, μ SS e, μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	î g		1	.15	1.8	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV}$	1708.02794 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 b 6 jets	E_T^{miss}	79.8 139	ε̈́σ ε̃σ			1.25	2.25	m($ ilde{k}_1^0$)<200 GeV m($ ilde{g}$)⋅m($ ilde{k}_1^0$)=300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
gen. squarks ect production	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1{\rightarrow}b\tilde{\chi}_1^0/\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{ccc} egin{array}{ccc} eta_1 & Forbidden \ eta_1 & eta_1 \ eta_1 & eta_1 \end{array} \end{array}$	Forbidden Forbidden	0.9 0.58-0.82 0.74			$m(\tilde{\chi}_{1}^{0})=300 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=1$ $00 \text{ GeV}, BR(b\tilde{\chi}_{1}^{0})=BR(t\tilde{\chi}_{1}^{1})=0.5$ $V, m(\tilde{\chi}_{1}^{+})=300 \text{ GeV}, BR(t\tilde{\chi}_{1}^{+})=1$	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	6 b	$E_T^{\rm miss}$	139	[˜] b ₁ Forbidden [˜] b ₁	0.23-0.48	0	.23-1.35	$\Delta m(\tilde{\chi}_2^0, \Delta m)$	$\tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=100 GeV $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$)=130 GeV, m($\tilde{\chi}_{1}^{0}$)=0 GeV	1908.03122 1908.03122
	$ \begin{split} \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow W h \tilde{\chi}_{1}^{0} \text{ or } \iota \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow W h \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow \tilde{\tau}_{1} h \nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \end{split} $	0-2 e, μ (1 e, μ 1 τ + 1 e,μ,τ	0-2 jets/1-2 3 jets/1 b 2 jets/1 b	E_T^{miss} E_T^{miss}	36.1 139 36.1	ī1 ī1 ī1 ī1	0.44-0.5	_	.16		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=400 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$	1506.08616, 1709.04183, 1711.115 ATLAS-CONF-2019-017 1803.10178
direct	$\tilde{\imath}_1\tilde{\imath}_1, \tilde{\imath}_1 {\rightarrow} c\tilde{\chi}_1^0 / \tilde{c}\tilde{c}, \tilde{c} {\rightarrow} c\tilde{\chi}_1^0$	0 e, μ 0 e, μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 36.1	\tilde{c} \tilde{t}_1 \tilde{t}_1	0.46 0.43	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\iota}_1, \tilde{c}) \cdot m(\tilde{\chi}_1^0)=50 \text{ GeV}$ $m(\tilde{\iota}_1, \tilde{c}) \cdot m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1805.01649 1805.01649 1711.03301
	$ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 e,μ 3 e,μ	4 b 1 b	E_T^{miss} E_T^{miss}	36.1 139	<i>ĩ</i> ₂ <i>ĩ</i> ₂	Forbidden	0.32-0.88 0.86			=0 GeV, $m(\tilde{t}_1) \cdot m(\tilde{\chi}_1^0) = 180 \text{ GeV}$ 360 GeV, $m(\tilde{t}_1) \cdot m(\tilde{\chi}_1^0) = 40 \text{ GeV}$	1706.03986 ATLAS-CONF-2019-016
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	≥ 1	E_T^{miss} E_T^{miss}	36.1 139	$rac{ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0}{ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0}$ 0.205	C	0.6			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1403.5294, 1806.02293 ATLAS-CONF-2019-014
t	$\tilde{x}_1^{\dagger} \tilde{x}_1^{\dagger}$ via <i>WW</i> $\tilde{x}_1^{\dagger} \tilde{x}_2^{0}$ via <i>Wh</i>	2 e, μ 0-1 e, μ	$2 b/2 \gamma$	E_T^{miss} E_T^{miss}	139 139	$\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0}$ Forbidden	0.42	0.74			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^0)=70 \text{ GeV}$	1908.08215 ATLAS-CONF-2019-019, 1909.092
direct	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}$ via $\bar{\ell}_{L} / \tilde{\nu}$ $\tilde{\tau} \tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$ $\bar{\ell}_{1,R} \tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0}$	2 e, μ 2 τ 2 e, μ	0 jets	E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139	$\tilde{\chi}_{1}^{\pm}$ $\tilde{\tau}$ [$\tilde{\tau}_{L}, \tilde{\tau}_{R,L}$] 0.16-0.3 \tilde{r}	0.12-0.39	0.7			$m(\tilde{\ell}, \tilde{v})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0})))$ $m(\tilde{\chi}_1^{0})=0$ $m(\tilde{\chi}_1^{0})=0$	ATLAS-CONF-2019-008 ATLAS-CONF-2019-018 ATLAS-CONF-2019-008
	$\hat{H}\hat{H}, \hat{H} \rightarrow h\tilde{G}/Z\tilde{G}$	2 e, μ 0 e, μ	≥ 1 $\geq 3 b$	E_T^{miss} E_T^{miss} E_T^{miss}	139 36.1	<i>t</i> 0.256 <i>H</i> 0.13-0.23		0.29-0.88			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ $BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$	ATLAS-CONF-2019-014 1806.04030
		4 <i>e</i> , μ	0 jets	E_T^{miss} E_T^{miss}	36.1	<i>Ĥ</i> 0.3					$BR(\tilde{\ell}_1^0 \rightarrow Z\tilde{G})=1$	1804.03602
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	E_T^{miss}	36.1	$\begin{array}{cc} \tilde{\chi}_1^{\pm} & \ \tilde{\chi}_1^{\pm} & 0.15 \end{array}$	0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple Multiple		36.1 36.1	\hat{g} \tilde{g} [$\tau(\tilde{g})$ =10 ns, 0.2 ns]				2.0 2.05 2.4	$m(\tilde{\chi}^0_1)$ =100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	еµ,ет,µт 4 е,µ 4-	0 jets -5 large- <i>R</i> je Multiple	E_T^{miss} ets	3.2 36.1 36.1 36.1	$ \begin{array}{l} \tilde{v}_{\tau} \\ \tilde{\lambda}_{1}^{\pm} / \tilde{\lambda}_{2}^{0} & [\lambda_{l33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{g} & [m(\tilde{\lambda}_{1}^{0}) = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} & [\lambda_{112}^{\prime\prime\prime} = 2e\cdot4, 2e\cdot5] \end{array} $		0.82	1.33 1.3	1.9 1.9 2.0	$\begin{array}{l} \lambda_{311}'=\!0.11,\lambda_{132/133/233}\!=\!0.07\\ \mathrm{m}(\tilde{\chi}_{1}^{0})\!=\!100~\mathrm{GeV}\\ \mathrm{Large}~\lambda_{112}''\\ \mathrm{m}(\tilde{\chi}_{1}^{0})\!=\!200~\mathrm{GeV},\mathrm{bino-like} \end{array}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
	$ \begin{split} & \widetilde{n}, \widetilde{i} {\rightarrow} \ell \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 {\rightarrow} tbs \\ & \widetilde{\iota}_1 \widetilde{\iota}_1, \widetilde{\iota}_1 {\rightarrow} bs \\ & \widetilde{\iota}_1 \widetilde{\iota}_1, \widetilde{\iota}_1 {\rightarrow} q\ell \end{split} $	2 e,μ 1 μ	Multiple 2 jets + 2 b 2 b DV		36.1 36.7 36.1 136	$ \begin{array}{ll} \tilde{g} & [\lambda'_{323} = 2e{-}4, 1e{-}2] \\ \tilde{t}_1 & [qq, bs] \\ \tilde{t}_1 & \tilde{t}_1 \\ \tilde{t}_1 & [1e{-}10{-}\lambda'_{32k} < 1e{-}8, 3e{-}10{-}\lambda'_{32k} \\ \end{array} $		1.0: 61 1.0	0.4-1.45	.6	m($\tilde{\chi}_1^0$)=200 GeV, bino-like BR($\tilde{l}_1 \rightarrow be/b\mu$)>20% BR($\tilde{l}_1 \rightarrow q\mu$)=100%, cos θ_l =1	ATLAS-CONF-2018-003 1710.07171 1710.05544 ATLAS-CONF-2019-006
_	•											
nlv	a selection of the available ma nomena is shown. Many of the			s or	1) ⁻¹					Mass scale [TeV]	

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

No discoveries yet, but not for lack of efforts

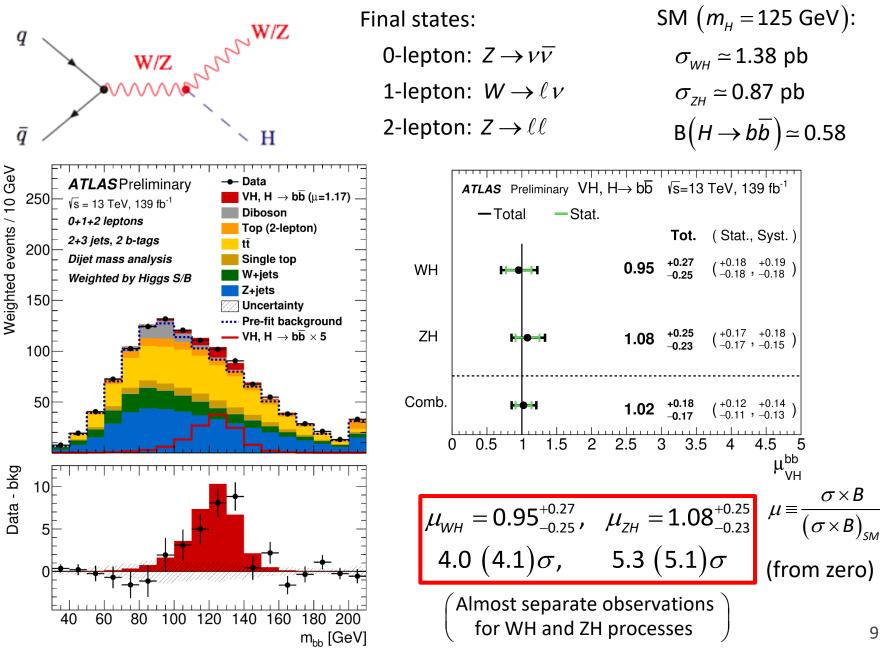

Higgs Boson Physics



- Major production processes (ggF, VBF, VH, ttH) and decay modes $(b\overline{b}, WW^*, \tau\tau, ZZ^*, \gamma\gamma)$ have been established
- Current efforts focused on precision measurements, studies of production and decay kinematics, Hμμ and Hcc couplings, HH production, and searches for BSM phenomena.

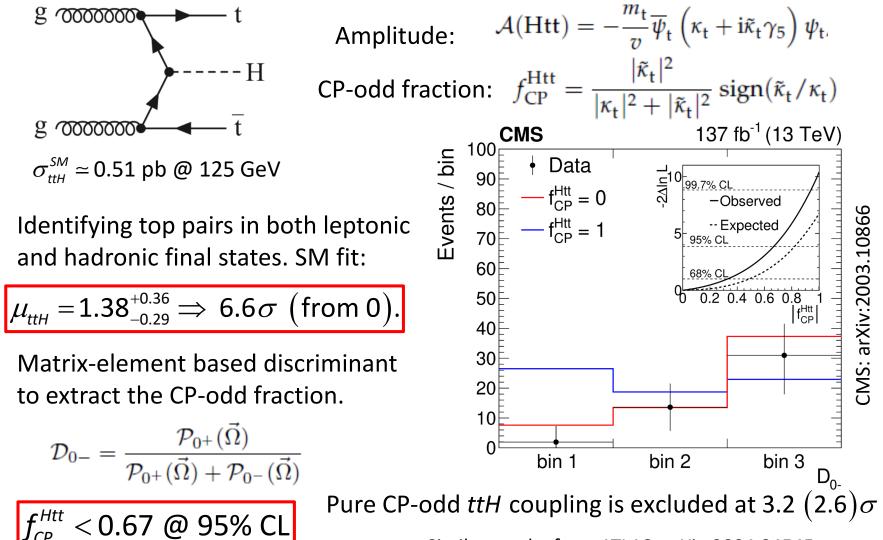
Higgs Boson Differential and STXS Measurements

From inclusive measurements to differential and simplifiedtemplate cross section (STXS) measurements \Rightarrow Enhancing sensitivities to BSM contributions

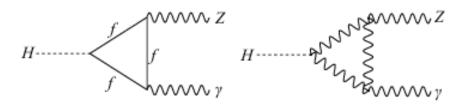


ATLAS: arXiv:2004.03447

8


WH, ZH Production with $H \rightarrow bb$

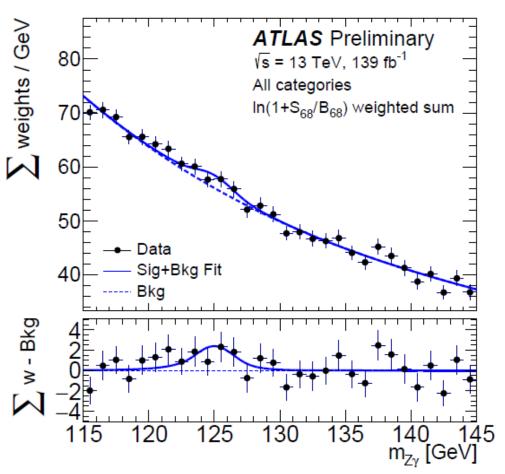
ATLAS-CONF-2020-006


Higgs-Top Coupling CP Structure

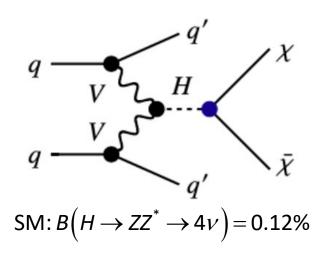
Extensive CP studies in the HVV coupling, $t\overline{t}H$ production with $H \rightarrow \gamma\gamma$ decay is idea to study the CP properties of the Higgs-fermion coupling.

Similar results from ATLAS: arXiv:2004.04545 10

Search for $H \rightarrow Z\gamma$ Decay

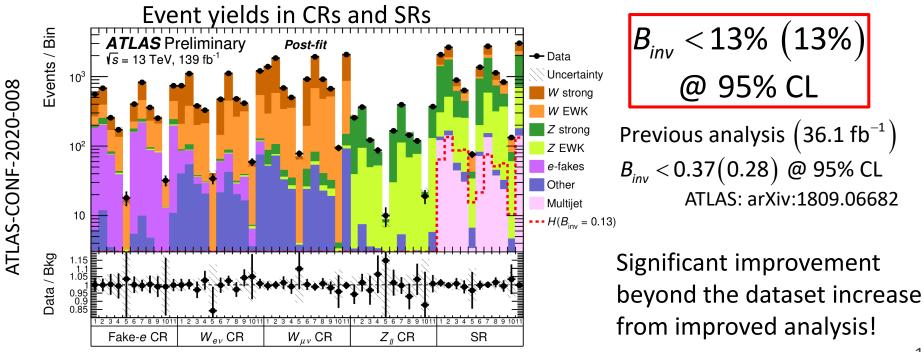


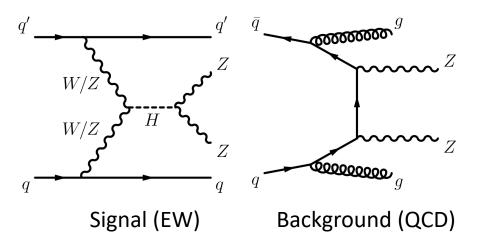
Search in $Z \rightarrow ee$, $\mu\mu$ final states, full Higgs mass reconstruction, good mass resolution.


Non-resonant SM Zγ process is the main background. Multiple (6) categories to take advantage of different S/B.

Fit the mass spectra to extract the potential signal.

Observed (Expected) significance: 2.2 (1.2) σ $\Rightarrow \mu < 3.6(2.6)$ @ 95% CL $(\mu = 2.0^{+1.0}_{-0.9})$ In the SM $(m_{H} = 125 \text{ GeV})$: $B(H \rightarrow Z\gamma) \approx 0.15\%$

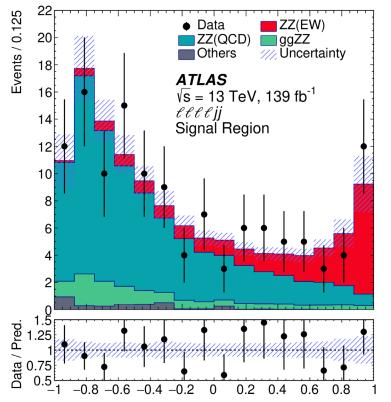

Search for the Invisible Decay of the Higgs Boson


Two VBF tagging jets recoiling against invisible Higgs boson decay. Background dominated by V+jets events.

Multiple (11) signal regions based on the mass and azimuthal separation of the tagging jets

Data control regions to constrain contributions from different background sources.

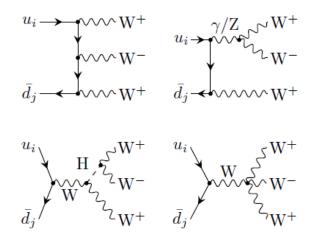
Observation of VBS ZZ Production

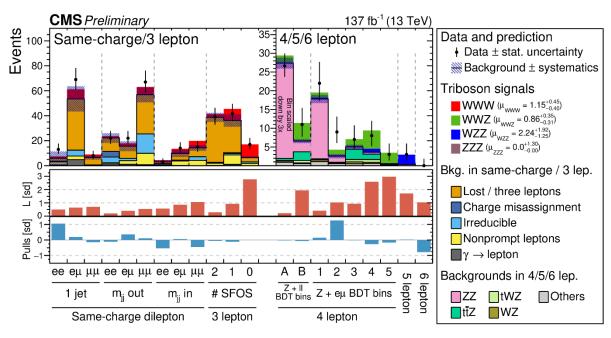

Select two tagging-jets, consider $ZZ \rightarrow 4\ell$, $\ell\ell \nu\nu$ final states.

Use control regions to constrain major background contributions, BDT based multivariate discriminant to improve S/B separation

No EW production hypothesis is excluded at 5.5 (4.3) σ .

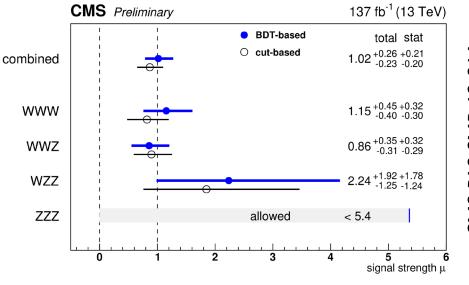
Signal: Production of ZZ pairs with two jets, with only EW vertices at the lowest order


Background: Production of ZZ pairs with two jets, with QCD vertices.


ATLAS: arXiv:2004.10612

MD

Observation of VVV Production



Diagrams of Higgs, trilinear and quartic couplings.

Look for *same-sign dilepton and multi-lepton* signatures

Final	$\sigma_{\rm SM}$	Significance				
State	(fb)	Observed (Expected)				
WWW	509	3.3(3.1)				
WWZ	354	3.4(4.1)				
WZZ	91.6	1.7(0.7)				
ZZZ	37.1	0.0(0.9)				
Combined	992	5.7(5.9)				

CMS-PAS-SMP-19-014

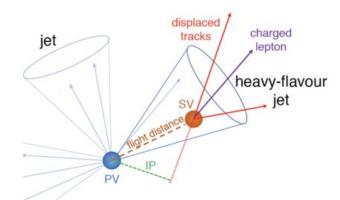
New Techniques and New Ideas

Changing analysis landscape

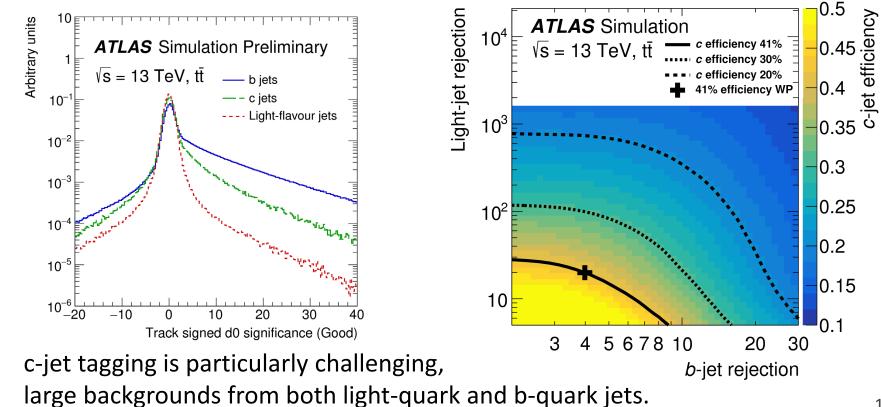
- Wide application of machine learning techniques, from searches, object identifications, to triggers;
- Proliferation of signal regions to maximize S/B separation;
- Exploring rare SM processes, challenging theoretical calculations;
- Emerging prominence of SSML final states, requiring new techniques for suppressing fake lepton contributions; ...

New techniques and signatures

- Large-radius jets with substructures for highly boosted V and top decays;
- Highly ionizing particles and displaced vertices to search for long-lived particles;
- Tagging of charm-jets, tagging of quark-jets from gluon-jets; ...


Theoretical development

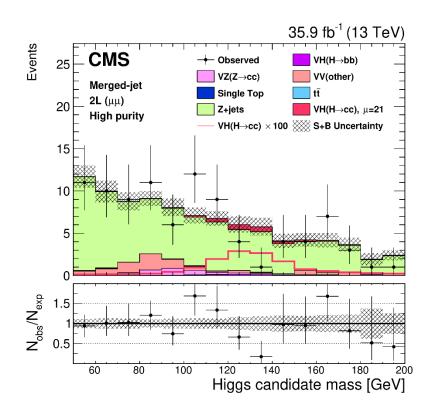
- Descriptions of experimental results in the framework or using the parameterization of EFT, STXS, and simplified models;
- Higher order corrections to constrain potential BSM physics;
- New BSM models; ...

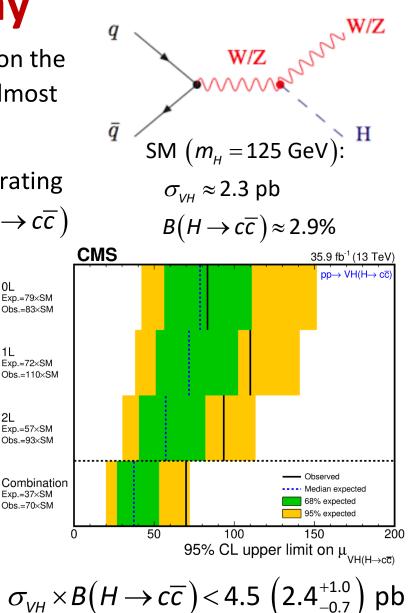

In the following slides, I will attempt to sample some of these points...

Tagging c-Quark Jets

Tagging c-quark jets is critical for the direct measurement of the Higgs-charm coupling, Important for testing Yukawa coupling beyond the 3rd generation.

Jet flavor tagging is largely based on hadron lifetimes: \Rightarrow measurable decay distances $c\tau_c \sim 100 \ \mu m$, $c\tau_b \sim 500 \ \mu m$

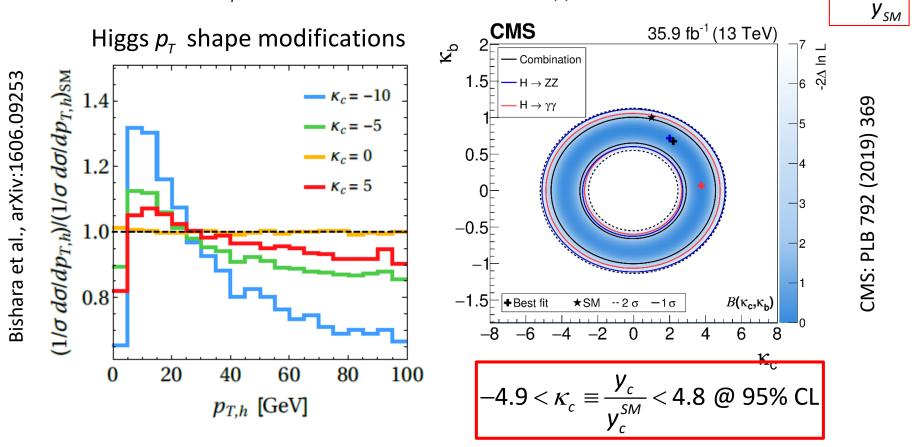

Search for $H \rightarrow cc$ Decay


Like the $H \rightarrow bb$ decay, cannot trigger on the decay \Rightarrow associated production \Rightarrow almost the same final state as the VH(bb).

b/c-jet tagging is the only tool for separating the two. Worse, $B(H \rightarrow b\overline{b}) \approx 20 \times B(H \rightarrow c\overline{c})$

1L

2L



arXiv:1912.01662 (CMS)

Still long way to be sensitive to SM

Hcc Coupling from Higgs pT Distribution

- An enhanced Higgs coupling to charm quark will modify the inclusive Higgs p_{τ}^{H} distribution due to enhanced $gQ \rightarrow HQ$ contribution.
- Constraint on the Higgs-charm coupling can be obtained from the the measured p_{τ}^{H} distribution, e.g., from $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$

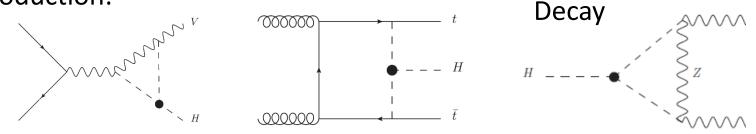
(Similar results from ATLAS: arXiv:2004.03969)

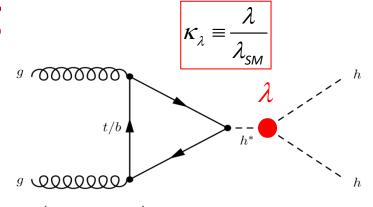
(from both the rate and shape info.)

19

Higgs Boson Self-Coupling

Higgs boson self-coupling can be directly probed through the measurement of the Higgs boson pair production

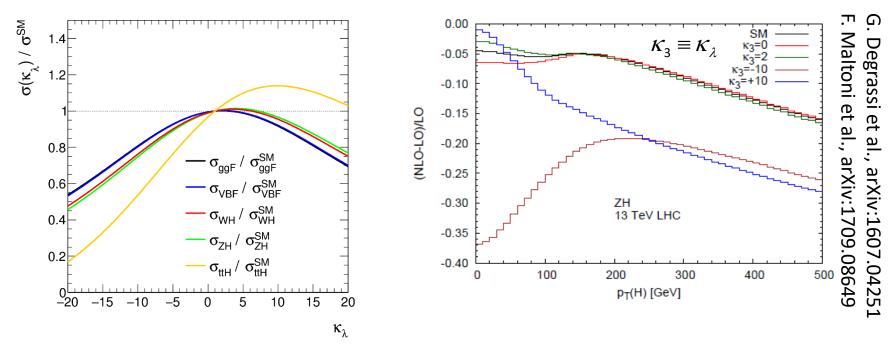

95% CL intervals:


ATLAS: $-5 < \kappa_{\lambda} < 12$ (arXiv:1906.02025) CMS: $-11.8 < \kappa_{\lambda} < 18.8$ (arXiv:1811.09689) (from 36 fb⁻¹ dataset)

Single Higgs boson production and decay are also sensitive to the self-coupling through Higher-order corrections.

These corrections are generally small in the SM, but can be large for large coupling modifications.

Production:

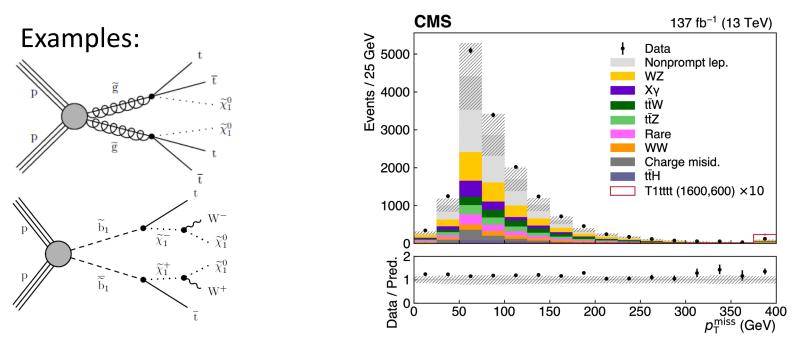


 $\sigma(gg \rightarrow hh) \approx 40 \text{ pb} @ 13 \text{ TeV}$

Higgs Boson Self-Coupling

Large self-coupling modification will lead to significant changes to the inclusive rates as well as event kinematics

ATLAS used both the rates and kinematic information ATL-PHYS-PUB-2019-009 CMS used the inclusive rates information only CMS-PAS-HIG-19-005

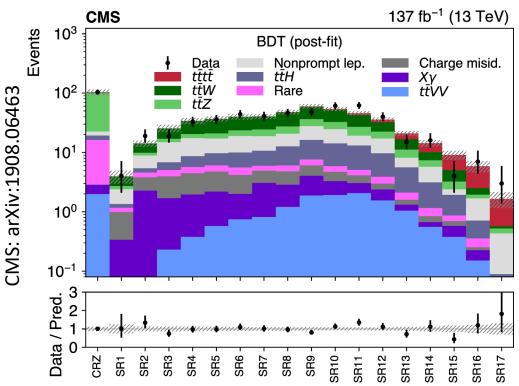

ATLAS:
$$\kappa_{\lambda} = 4.0^{+4.3}_{-4.1}$$
 or $-3.2 < \kappa_{\lambda} < 11.9$ @ 95% CL
CMS: $\kappa_{\lambda} = 6.7^{+4.6}_{-6.6}$

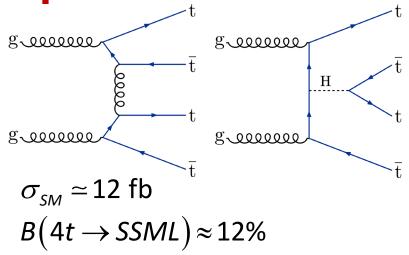
Competitive with the constraints from the direct searches

SSML: Searches for Supersymmetry

- Same-sign dilepton and multi-lepton events (SSML) have relatively low rates in the SM.
- Are expected in many extensions to the Standard Model Often produced in the cascade decays of heavy particles.
- Good generic signatures for many BSM scenarios

CMS studied SSML events with at least two jets to search for SUSY and set constraints on many SUSY models




SSML: Search for Four-Top Production

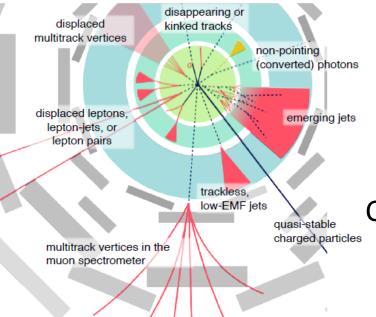
Rare process in the SM, interesting for Higgs and BSM physics.

Signature: SSML events with multiple light-flavor and b-quark jets.

Backgrounds: dominated by the *ttX (X=V,H)* processes and fakes.

BDT to improve S/B separations. 17 discrete BDT bins as SRs.

Using theoretical calculations and measurements to constrain ttX backgrounds.


$$\sigma_{\scriptscriptstyle tttt}$$
 =12.6 $^{\scriptscriptstyle +5.8}_{\scriptscriptstyle -5.2}$ fb \Rightarrow 2.6 σ significance

Long-Lived Particles

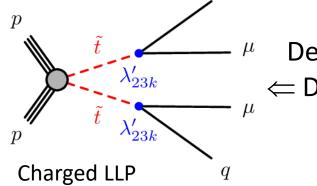
Particle decay distance often determines how it can be detected:

- $\gamma c \tau < \sim 1 \text{ cm} \Rightarrow \text{detect daughter particles}$
- $\gamma c \tau > \sim 10 \text{ m} \Rightarrow$ decay outside the detector, detect parent particle

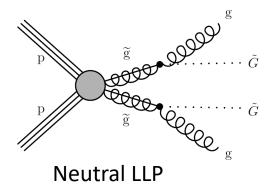
LLPs: new particles that decay in the detector, could be both neutral or charged

Signatures:

displaced vertices, non-prompt jets, disappearing tracks, highly ionizing charged particles, stopped particles, ...


Backgrounds are expected to small compared with standard signatures

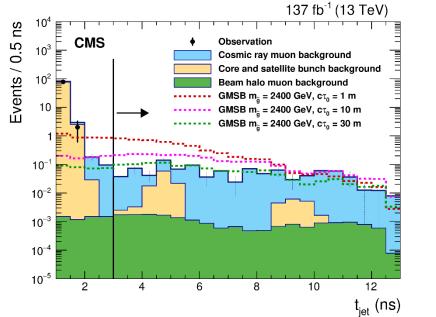
Challenges:


These events are generally not recorded, need special trigger and reconstruction software

LHC potential for LLP searches has been discussed extensively in arXiv:1903.04497. Many searches have been performed.

Search for Long-Lived Particles

Decay inside the detector ← Displaced vertices Non-prompt jets ⇒



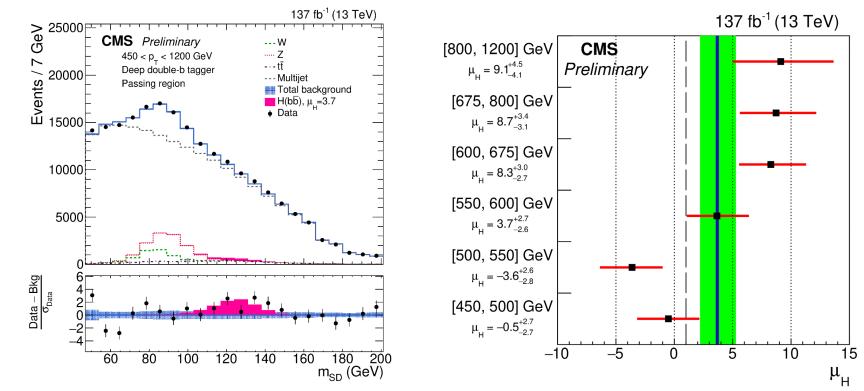
Reconstruct DVs in the inner detector from tracks with large displacements, DV mass as the discriminant

Events ATLAS Heavy Flavor Data √s=13 TeV, 136 fb⁻¹ Cosmics Fakes E^{miss} Trigger Selection 6-Full Muon Selection (m,τ)=(1.7 TeV, 0.01 ns) Highest m_{DV} Presel. DV $(m_{\tau_{\tau}},\tau_{\tau_{\tau}})=(1.7 \text{ TeV}, 0.1 \text{ ns})$ w/ ≥3 Tracks (m,,,,,)=(1.7 TeV, 1 ns) 10^{2} 10^{3} 10 10^{4} m_{DV} [GeV]

ATLAS: arXiv:2003.11956

Use calorimeter timing to identify non-prompt jets, extending the search to proper decay distance $c\tau <~ 1 \text{ m}$

CMS: arXiv:1906.06441


24

Highly Boosted Particles

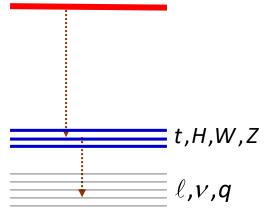
For $H \rightarrow b\overline{b}$, the $b\overline{b}$ angular separation: The two jets from *b*-quarks cannot be efficiently resolved in the detector if $p_T^H \gg m_H$, more efficient to reconstruct them as a single large-radius jet (J).

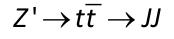
Boosted particle tagging technique significantly improves our ability to study high- p_{τ} phenomena.

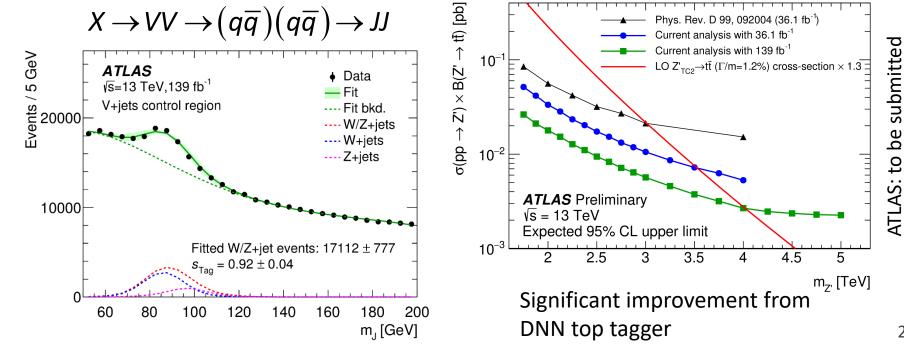
Example: CMS inclusive $H \rightarrow b\overline{b}$ measurements.

CMS-PAS-HIG-19-003

Н


25

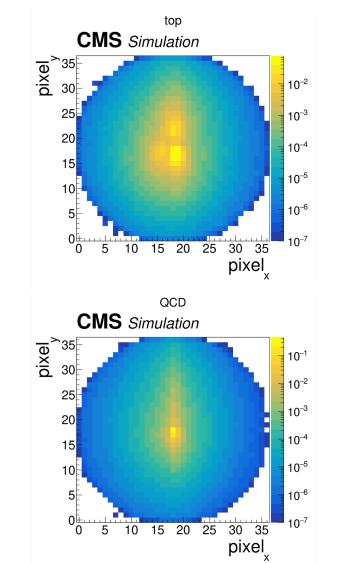

Highly Boosted Particles


As the mass exclusion pushed higher, the mass gaps between new resonances and SM particles get larger \Rightarrow highly boosted SM particles in decays.

This feature has been extensively exploited in searches for heavy resonances, particularly in new diboson and ditop resonances, pushing searches to multi-TeV mass regime.

Machine Learning for Particle ID

Machine learning techniques are prevalent in analyses at the LHC for sometime, they are now being applied to particle identifications as well.


ImageTop:

an algorithm developed by CMS to discriminate energetic hadronically decaying top-quark jets from QCD jets.

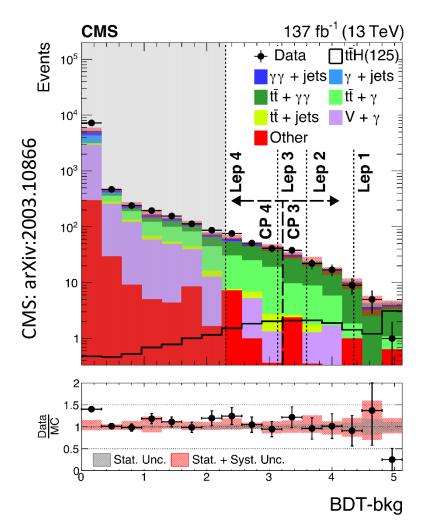
- It uses standard image recognition technique based convolutional neural network.
- Pixelizing the jet energy deposits and define different channels based on relevant detector information.

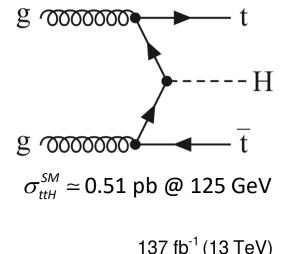
For $1000 < p_{\tau} < 1500$ GeV, a rejection of ~ 100 for QCD jets with a 50% efficiency for top jets can be achieved.

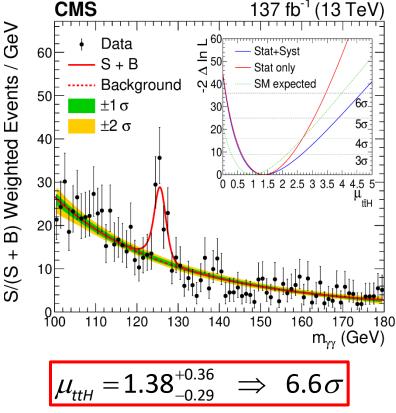
These new techniques pave the way for more innovative analyses !

Concluding Remarks

- Many new results from the LHC. Standard Model is alive and well. No indication of BSM physics... unfortunately (see talks at this symposium and <u>ATLAS</u> and <u>CMS</u> for additional information)
- LHC will run for the next 15+ years. With 95% of the data is yet to come, precision measurements and studies of rare processes are likely to be the focus. (see the next presentation by Anadi Canepa).
- With limited potential for increasing in energy, now is more than ever for new calculations, techniques, and ideas for exploring the LHC physics potential to the fullest.


Thank you for your attention!




Additional Slides

ttH Production with $H \rightarrow \gamma \gamma$

Identify top-pair using their hadronic and leptonic decays, BDT for S/B separation

Higgs-Top Coupling CP Structure

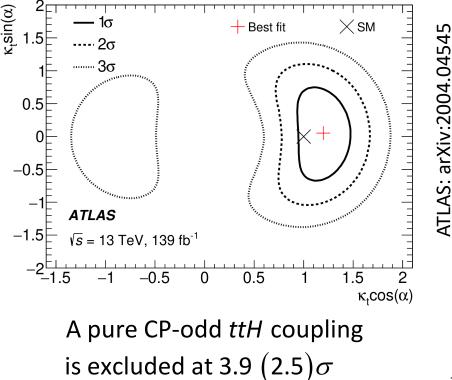
Similar analysis in ATLAS, with slightly different parameterization

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H \qquad CP \text{ angle: } \alpha = 0 \text{ in the SM}$$

$$\Rightarrow f_{CP-even}^{Htt} = \left(\sin \alpha \right)^2$$

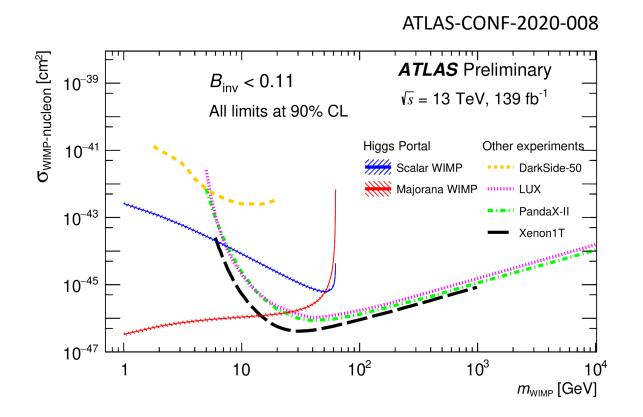
Multiple (20) signal categories based on two BDTs, one for ttH-background discrimination, the other for separating CP-even and CP-odd components.

Simultaneous fit to the $m_{\gamma\gamma}$ distribution in all categories.


Assuming CP-even:

 $\mu_{\scriptscriptstyle ttH}$ = 1.4 \pm 0.4 \pm 0.2 \Rightarrow 5.2 σ

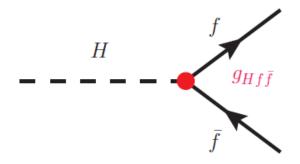
With the CP mixture:


$$|lpha|$$
 < 43° (63°) @ 95% CL

(without prior κ_t constraint)

Implication on WIMP

Interpreting the B_{inv} limit from the VBF $H \rightarrow inv$ search as the constraint on the spin-independent WIMP-nucleon cross section within the effective field theory framework.



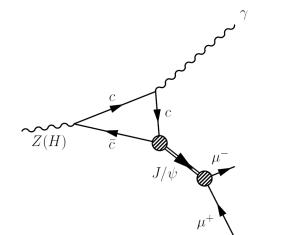
Note: $B_{inv} < 13\%$ @ 95% CL $\implies B_{inv} < 11\%$ @ 90% CL

Higgs-Charm (Hcc) Coupling

Hcc coupling is extremely challenging to measure at (HL-)LHC.

Important for testing Yukawa couplings beyond the 3rd generation.

In SM:

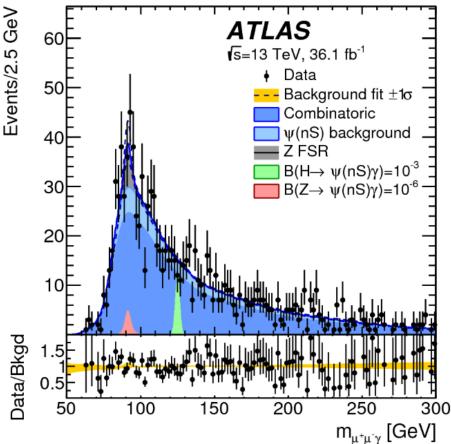

$$y_c = \frac{\sqrt{2}m_c}{\upsilon} \sim 10^{-2} \implies B(H \rightarrow cc) \approx 2.9\% @ m_H = 125 \text{ GeV}$$

About 20× smaller than $B(H \rightarrow b\overline{b})$, 3× smaller than $B(H \rightarrow gg)$. Moreover, c-quark jets are experimentally difficult to identify.

Can benefit greatly from new tools and ideas:

- \Rightarrow *New* experimental tool: c-jet tagging
- \Rightarrow New theoretical ideas: $H \rightarrow J/\psi \gamma$, Hc production, p_{τ}^{H} distribution, ...

Search for $H \rightarrow J/\psi + \gamma$



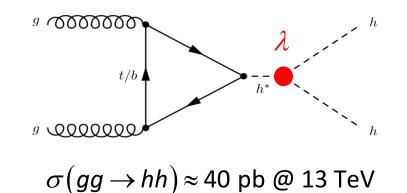
Identify J/ψ through $J/\psi \rightarrow \mu^+ \mu^-$, Search for mass bump in the smooth $\mu^+ \mu^- \gamma (J/\psi \gamma)$ spectrum Upper limit on $B(H \rightarrow J/\psi \gamma)$: ATLAS: <3.5 (3.0)×10⁻⁴ CMS: <7.6 (5.2)×10⁻⁴ @ 95% CL assuming J/ψ is transversely polarized.

ATLAS: arXiv:1807.00802, CMS: arXiv:1810.10056

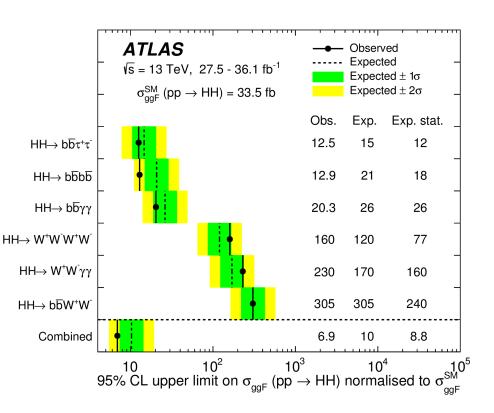
In SM:
$$B(H \rightarrow J/\psi \gamma) \approx 3 \times 10^{-6}$$

arXiv:1505.03870, arXiv:1407.6696

Higgs Boson Potential


$$V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2 \Longrightarrow \lambda \upsilon h^3 + \frac{\lambda}{4} h^4$$

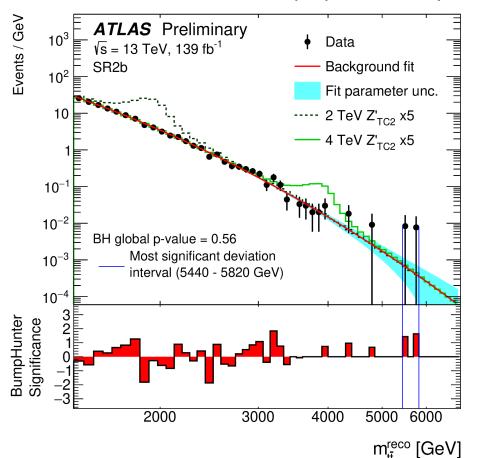
SM: $\lambda = \frac{m_h^2}{2\upsilon^2} \sim \frac{1}{8}$

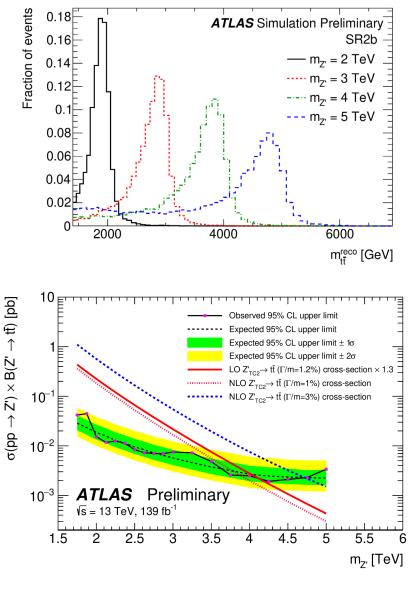

Higgs boson pair production can directly probe the Higgs boson *self-coupling* (and therefore the *Higgs potential*), but the rates are low and backgrounds are high

95% CL intervals:

ATLAS: $-5 < \kappa_{\lambda} < 12$ CMS: $-11.8 < \kappa_{\lambda} < 18.8$

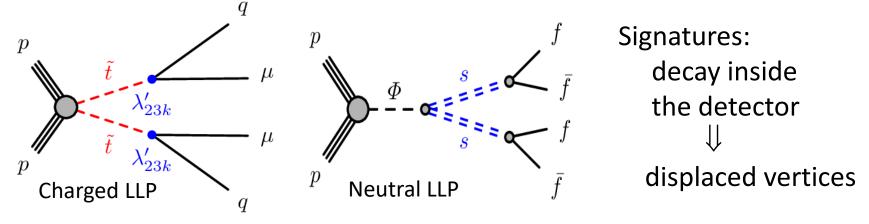
(from 36 fb⁻¹ dataset)

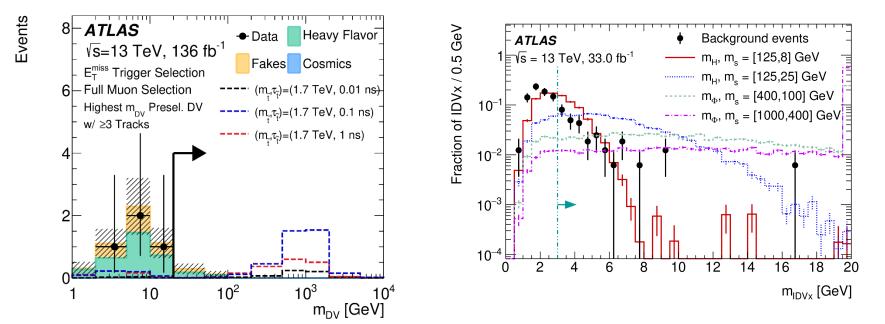



ATLAS: arXiv:1906.02025, CMS: arXiv:1811.09689

Z'→tt in Fully Hadronic Final States

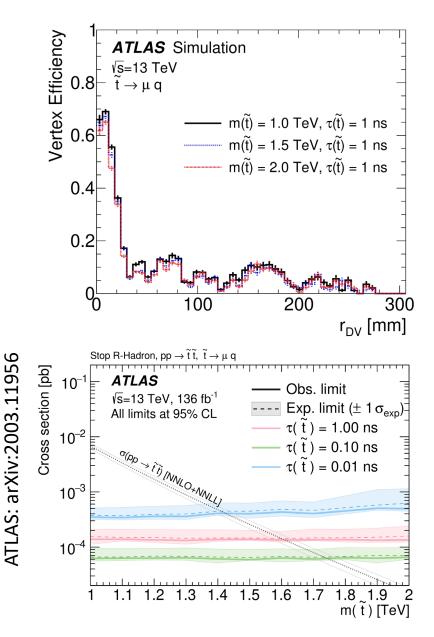
Search for a pair of highly boosted Top quarks in their hadronic decays

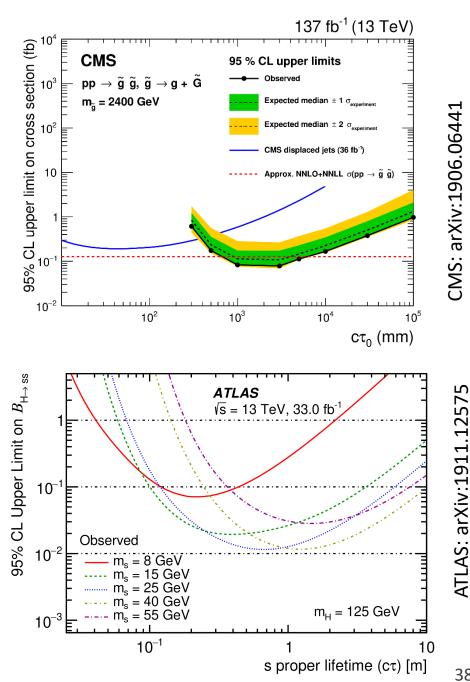

Deep neural network to identify large-R jets with substructures consistent with those from hadronic top-quark decays



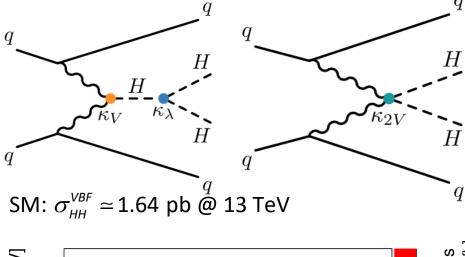
Search for Long-Lived Particles

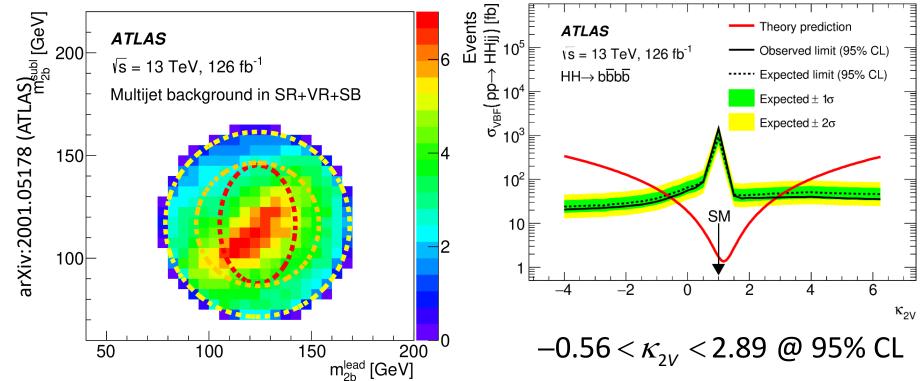
ATLAS: arXiv:2003.11956




Reconstructing DVs in the inner detector from tracks with large displacements, using vertex mass as the discriminant. The neutral search identifies the other LLP decays inside the muon detector, extending $c\tau < ^{1}$ m.

ATLAS: arXiv:1911.12575


LLP Search Limits


38

Search for VBF HH→4b

Final state: *jj* + *bbbb*

Two tagging jets: $|\eta^{ii}| > 5.0$, $m_{jj} > 1000$ GeV Four b-jets forming two H \rightarrow bb candidates Background dominated by multijets

