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At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given
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Tools to Answer the Big Questions
As the last speaker of this superb conference, 

I don’t have to list the big questions in the field that keep all of us awake at night…
(no, I’m not talking about how to find the “share screen” button on Zoom)

Instead, Tao asked me to talk about the tools we should use/build to answer them.

These days, the best tool that would ensure big progress in science is

Cosmology frontier Energy frontierAstroparticle frontier

The physics world according to Snowmass

Intensity frontier
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Chirality and the Mass Conundrum
SM = S(R+Q)M

triumph of Quantum Mechanics + Special Relativity

particles = representations of Poincaré group, labelled by (according to Coleman-Mandula)

(spin, mass) ⊗ internal quantum numbers

quantised continuous

A priori in agreement with data

Why is the top special?

BUT 
spectrum is incompatible with chiral nature of gauge symmetries

chiral fermion ➾ m=0 only
gauge boson ➾ m=0 only

(picture: courtesy of A. Weiler)

at least SU(3)xSU(2)xU(1)

In molecular biology, chirality seems an emergent property.
Are the chiral nature of the weak interactions emergent too?

mailto:andreas.weiler@cern.ch,%20christophe.grojean@cern.ch?subject=Your%20mass-spectrum%20plot
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Solution: Spontaneous Symmetry Breaking

Oxford English

Christophe Grojean Higgs Physics Ibarra, March. 10-12, 2o1513
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vacuum = a space entirely devoid of matter

vacuum = a space filled with Higgs substance
Physics English

Short-distance interactions ≠ Long-distance interactions
 The masses are emergent due to a non-trivial structure of the vacuum

The vacuum of the SM breaks SU(2)xU(1) to U(1)em via the dynamics of an elementary scalar field
The Higgs Boson

4

mass. The “cancellation” of massless bosons to give
a massive boson, as anticipated by Anderson and
developed in the 1964 papers, is the famous Higgs
mechanism; for their contributions to its discovery,
Englert and Higgs received this year’s Nobel Prize
in Physics. (For more, see page 10 of this issue.)

As recounted in his 2010 talk “My Life as a
Boson,” Higgs submitted his second paper of 1964
to Physics Letters, which promptly rejected it.10

Shocked at that setback, he revised and expanded
the manuscript, adding the key observation that
when applied to a charged spinless boson, the Higgs
mechanism leaves behind a neutral spinless boson.
That neutral particle—the Higgs boson—has a mass
determined by the shape of the Mexican-hat poten-
tial energy density, but that mass cannot be expressed
in terms of the mass generated for the gauge boson.
Higgs sent the improved revision to a different jour-
nal, Physical Review Letters, and it was promptly 
accepted.

At first, theorists thought that the most suitable
application of spontaneous symmetry breaking to
particle physics was in the arena of the strong inter-
actions. Only in 1967 did Weinberg, and, independ-
ently, Salam, realize that the Higgs mechanism of-
fered an elegant explanation of the weak interactions.
In their model, which is now the electroweak portion
of the standard model, four Higgs fields are related
by a gauge symmetry of the type introduced by
Yang and Mills. Three Goldstone bosons are eaten
to give large masses to the W+, W−, and Z bosons that
mediate the weak interactions. An added bonus, not
foreseen by Higgs and the rest, is that the Higgs
field also gives mass to quarks and leptons, the ele-
mentary fermions that make up matter.

The mass of the Higgs boson left behind is not
predicted, but the interactions of the Higgs with
other elementary particles can be precisely com-
puted as a function of its mass and the masses of the
other particles. Furthermore, the exchange of virtual
Higgs bosons generates an attractive short-range
force. If the Higgs boson is an elementary particle,
as so far appears to be the case, then that force is
every bit as fundamental as the gauge-boson-medi-
ated forces of the standard model. In that case, the
Higgs would be the first fundamental force media-
tor ever detected that is not a gauge boson.

The discovery
The ATLAS and CMS (Compact Muon Solenoid) ex-
periments at the LHC were built to probe the mech-
anisms of electroweak symmetry breaking and the
particle origins of dark matter. Wired up with about
a hundred million readout channels each and made
up of many thousands of tons of material that inter-
acts with the particles emanating from the LHC’s
high-energy proton–proton collisions, the two de-
tectors have already managed to capture and recon-
struct many rare Higgs boson candidate events.11

Since Higgs bosons decay into other particles
after about 100 yoctoseconds (10−22 seconds), the col-
lider searches involve several different decay signa-
tures or channels. Figure 3 illustrates the two most
important channels used by ATLAS and CMS in
their quest for the Higgs. One represents the Higgs

decay process into two virtual Z bosons, each of
which, in turn, decays into an electron–positron or
muon–antimuon pair. The other shows the Higgs
decay into two photons. The image on pages 28 and
29 shows a visualization of the data produced by a
Higgs boson candidate at the LHC; the four decay
products are muons or antimuons—a pair of each—
whose tracks are depicted as red lines.

The experimental results so far suggest that the
particle observed at the LHC is indeed a Higgs
boson, though not necessarily possessing exactly
the properties postulated by the standard model.
The discovery itself is based on large excesses of
Higgs-like events in the two decay channels de-
scribed above, supported by less conclusive but
compatible excesses observed in other channels.
Figure 4 displays CMS data for the four-lepton
channel. The measured mass is about 126 GeV/c2, 
intermediate between the mass of the Z boson and
the mass of the top quark. 

The new particle cannot be a spin-1 particle be-
cause the decay of such an object into two photons is
forbidden by a general result known as the Landau–
Yang theorem. Its wavefunction does not change
sign when operated on by CP (a product of the dis-
crete symmetries of charge conjugation and coordi-
nate inversion, or parity), as the pion wavefunction
does. So the new particle is either unchanged by CP,
as a Higgs boson is, or it could be a CP-violating 
admixture if there exists a new source of matter–
antimatter asymmetry related to the Higgs. The pro-
duction rate of the particle and the degree to which
it decays into different channels appear consistent
with the standard-model predictions for the Higgs
boson, although the experimental uncertainties are

www.physicstoday.org December 2013 Physics Today    31

V ϕ( )

Re ϕ

Im ϕ

Figure 2. The Mexican-hat potential energy density considered by 
Jeffrey Goldstone in his seminal 1961 paper.2 The energy density is a
function of the real (Re) and imaginary (Im) values of a spinless field ϕ.
In the context of the electroweak theory developed later in the decade,
the yellow ball at the top of the hat would represent the symmetric 
solution for the potential, in which the photon, W bosons, and Z boson
are all massless. The blue ball in the trough represents the solution after
symmetry breaking. In that solution the W and Z bosons are massive
and the photon remains massless. The steepness of the trough is related
to the mass of the Higgs boson.

• At this point it is usually claimed 
that spontaneous symmetry 
breaking is obvious, but this is 
not so

• For example in the double well 
quantum mechanics problem, 
there is a degeneracy 
associated with a Z2 symmetry

• But the ground state is a 
superposition that preserves the 
symmetry!

Joseph Lykken                                                                                                                        Aspen Winter Conference, January 19, 2014

Goldstone’s Mexican Hat (1961)

Ground state of QM double well potential 
is a superposition of two states localised on one minimum, 

and this superposition preserves the Z2 symmetry of the potential  
In QFT, it is more difficult to transition between degenerate vacua  

and spontaneous symmetry breaking can occur
(or more correctly, the symmetry is non-linearly realised in Hilbert space) 

QM vs QFT
(courtesy of J. Lykken@Aspen2014)
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The Higgs Boson is Special
The Higgs discovery in 2012 has been an important milestone for HEP.

And many of us are still excited about it.
And others, especially in other fields of science, should be excited too.

Higgs = new forces of different nature than the gauge interactions known so far

• No underlying local symmetry
• No quantised charges
• Deeply connected to the space-time vacuum structure

The knowledge of the values of the Higgs couplings 
is essential to our understanding of the deep structure of matter 

• Up- and Down-quark Yukawa’s decide if mproton<mneutron i.e. stability of nuclei
• Electron Yukawa controls the size of the atoms
• Top quark Yukawa decides (in part) of the stability of the EW vacuum
• The Higgs self-coupling controls the (thermo)dynamics of the EW phase transition (t~10-10s)
(and therefore might be responsible of the dominance of matter over antimatter in the Universe)
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Which Machine(s) to Measure the Higgs?

6

Leptons
 S/B ~ 1 ➾ measurement?

 polarized beams 
        (handle to chose the dominant process)

 limited (direct) mass reach

 identifiable final states 

 ➾ EW couplings  

 higher luminosity 
 several interaction points
 precise E-beam measurement

  ( O(0.1MeV) via resonant depolarization) 

 √s limited by synchroton radiation

Circular Linear
 easier to upgrade in energy 

 easier to polarize beams

“greener”: less power consumption*

 large beamsthralung 

 one IP only
*energy	consump.on	per	integrated	luminosity	is	lower	at	circular	colliders	but	the	energy	consump.on	per	GeV	is	lower	at	linear	colliders	

 large mass reach ➾ exploration?
 S/B ~ 10-10 (w/o trigger)
 S/B ~ 0.1 (w/ trigger)
 requires multiple detectors 

                (w/ optimized design) 

 only pdf access to √s
 ➾ couplings to quarks and gluons

Hadrons

^
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Exploration machines are at the heart of HEP
Current consensus towards European Strategy Update:

the best way to go to energy frontier is to start with e+e- Higgs factory 
factory

 Higher luminosity
 Z-pole run

 Can be extended in energy
 Polarised beams

Linear or Circular?

Three relevant questions to address to help taking a decision: 
1) Impact of Z pole measurements?

2) Benefit of beam polarisation?
3) Is low energy a limitation?
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Future of HEP: Flagship Projects

T0

2032

2030

2035

2037

2040

2045

2030

Subject to large uncertainty
1) need a scientific consensus

2) political approval 

ECFA Higgs study group ‘19

Hi!s-mantics

Divination "r#gh Hi!s
Friday, January 27, 2012

+ muon-collider + gamma-gamma collider + …
Figure 1. Time line of various collider projects starting at time T0. Given are the luminosity values and energies, also shown
in Table 1. For the clarification of the meaning of a year of running, see the caption to Table 1. Figure 13 in the appendix
reworks this figure using the earliest possible start date (i.e. the calendar date of T0) given by the proponents.

At the heart of the Higgs physics programme is the question of how the Higgs boson couples to Standard Model elementary
particles. Within the SM itself, all these couplings are uniquely determined. But new physics beyond the SM (BSM) can modify
these couplings in many different ways. The structure of these deformations is in general model-dependent. One important
goal of the Higgs programme at the future colliders is to identify, or least constrain, these deformations primarily from the
measurements the Higgs production cross section, s , times decay branching ratio, BR)2. Ultimately, these studies will be used
to asses the fundamental parameters of the new physics models. For the time being, in the absence of knowledge of new physics,
we need to rely on a parametrisation of our ignorance in terms of continuous deformations of the Higgs boson couplings.
Different assumptions allow to capture different classes of new physics dynamics. First, in the so-called k-framework [13, 14],
often used to interpret the LHC measurements, the Higgs couplings to the SM particles are assumed to keep the same helicity
structures as in the SM. While it offers a convenient exploration tool that does not require other computations than the SM
ones and still captures the dominant effects of well motivated new physics scenarios on a set of on-shell Higgs observables,
the k-framework suffers from some limitations that will be discussed later and it includes some biases that will prevent to
put the Higgs programme in perspective with other measurements, see e.g. the discussion in Ref. [15] and at the beginning
of Section 3. An alternative approach, based on Effective Field Theory (EFT), considers new Higgs couplings with different
helicity structures, with different energy dependence or with different number of particles. They are not present in the SM but
they can potentially generated by new heavy degrees of freedom.

Furthermore, the sensitivity of the data to the Higgs self-coupling is analysed based on single-Higgs and di-Higgs production
measurements by future colliders. Due to lack of access to the simulated data of the collaborations, in particular differential
kinematical distributions, it is not possible in this case to perform a study with similar rigor as the analysis of the single-Higgs-
coupling presented above.

The Higgs width determination is also discussed as is the possible decay of the Higgs bosons into new particles that are
either "invisible" (observed through missing energy - or missing transverse energy) or "untagged", to which none of the Higgs
analyses considered in the study are sensitive. Rare decays and CP aspects are also discussed.

All colliders have provided extensive documentation on their Higgs physics programme. However, sometimes different
choices are made e.g. on which parameters to fit for and which to fix, what theoretical uncertainties to assume, which operators
to consider in e.g. the EFT approach. This would lead to an unfair comparison of prospects from different future colliders,
with consequent confusing scientific information. In this report, we aim to have a clear, reasonable and unique approach to the
assumptions made when comparing the projections for the future.

In general, one should not over-interpret 20% differences between projected sensitivities for partial widths of different
future projects. In many cases, these are likely not significant. For instance, CEPC and FCC-ee at

p
s = 240 GeV expect

2The Higgs couplings could be constrained less directly from processes with no Higgs in the final state or without even a non-resonant Higgs. But the main
focus of the study presented in this report will be on the information obtained from the measured s ⇥BR. Still, note that, at lepton colliders, the ZH associated
production can be measured without the decay of the decay of the Higgs.

4/58

Summary	of	National	Inputs																											S.	Bethke		(MPP	Munich)																												ESPP	Symposium,	Granada,	15	May	2019 �4
UB

Possible	scenarios	of	future	colliders

2020 2070

HL-LHC:	13	TeV	3-4	ab-1		

20402030

FCC	hh:	100	TeV	20-30	ab-1

HE-LHC:	27	TeV	10	ab-1		

2050 2060

CLIC:	380	GeV	
1.5	ab-1

Ja
pa
n

	C
ER

N

ILC:	250	GeV		
2	ab-1

CepC:	90/160/240	GeV	
16/2.6/5.6	ab-1	

500	GeV	
4	ab-1

FCC-ee:		
90/160/250	GeV		
150/10/5	ab-1	

FCC	hh:	100	TeV	20-30	ab-1		

Ch
in
a SppC	aim	similar	to	FCC-hh	

LHeC:	1.2TeV	
0.25-1	ab-1© FCC-eh:	3.5	TeV	2	ab-1

Proton	collider
Electron		collider
Electron-Proton		collider

2080

Construction/Transformation

7	years

10	years

11	years

8	years

2090
13/05/2019

350-365	GeV		
1.7	ab-1	

1.5	TeV	
2.5		ab-1

3	TeV	
5		ab-1

9	years

20km	tunnel	

100km	tunnel	

100km	tunnel	

11	km	tunnel	
29	km	tunnel	 50	km	tunnel	

FCC	hh:	150	TeV	≈20-30	ab-1		
11	years

15	years

1	TeV	
≈	4-5.4	ab-1

31km	tunnel	 40	km	tunnel	

100km	tunnel	

4	years

8	years

8	years

8	years

6	years2	years

Preparation

5	years

Ursula Baesler, Granada 13.05.2019

don’t wait LHC to finish

➙ improved PDFs and interesting Higgs measurements too
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don’t wait LHC to finish

 Stay safe/healthy and live long! 
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The SM Challenges

8

Statistics will become less and less important ↔ Systematics will become dominant
— Therefore progress requires —

• Better control of parametric uncertainties, e.g. PDFs, αs, mt, mH

• Higher order theoretical computations, e.g. N…NLO
• Understand correlations among different bins in diff. distributions

Status of NNLO

14

NNLO scale uncertainty bands of 1-2%. 

Is the theory uncertainty indeed 1-2%? 

theoretical uncertainties

S. Farry | University of Liverpool 24/22

Don’t think future HEP 
is only EXP-business.

Theorists have 
to work harder too!

Early LHC days: fast progress followed from increased statistics

NNLO needed 
to reach O(1%) precision
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Kappa-2: allowing BSM and Invisible

�16

Higgs Coupling Fit (Future Collider Standalone)
ECFA Higgs study group ‘19
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Important synergy HL-LHC — low energy lepton colliders
1. Top/Charm Yukawa

2. Statistically limited channels: γγ, mumu, Zγ

ECFA Higgs study group ‘19
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Higgs Coupling Fit (HL-LHC+Future Collider)
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Synergy ee-hh
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Kappa-3: +HL-LHC  

�17

modified version (x-scale) of the plot in the report for illustration purposes 

FCC-hh without ee could 
still bound BRinv

but it could say nothing 
about BRunt

M. Cepeda (CIEMAT)  Open Symposium on the Update of European Strategy for Particle Physics  

Kappa-3: +HL-LHC  

�17

modified version (x-scale) of the plot in the report for illustration purposes 

FCC-hh is determining top Yukawa through ratio tth/ttZ
So the extraction of top Yukawa heavily relies on the knowledge of ttZ from FCC-ee

But it also benefits a lot from a synergy with EW measurements.
This cannot be captured by the kappa’s and requires a full EFT analysis

M. Cepeda (CIEMAT)  Open Symposium on the Update of European Strategy for Particle Physics  

Kappa-3: +HL-LHC  

�17

modified version (x-scale) of the plot in the report for illustration purposes 

kW improves significantly with energy increase 
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Global fit results

�22
Jorge de Blas 
INFN - University of Padova

Open Symposium - Update of the European Strategy for Particle Physics 
Granada, May 14, 2019
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There is life 

beyond HL-LHC

hZZ & HWW
are now

very much the same thanks
custodial symmetry emerging 

from EW measurements

1% 
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threshold
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Going Beyond Inclusive Measurements

1. off-shell gg → h* → ZZ → 4l

2. boosted Higgs: Higgs + high-pT jet

• Higgs couplings at high-energy:

• High pT distribution: “energy helps accuracy”

1. BSM effects often grow with energy

2. study of poorly populated phase space regions with smaller systematics

European Strategy Studies focused on inclusive measurements
They don’t do justice to richness of kinematical distributions accessible 

at either leptonic machines (thanks to their clean environment) or high-energy hadronic machines 
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Higgs & EW interplay
Potentially new BSM-effects in h physics 

could have been already tested in the vacuum

SM Scalar is the excitation around the EWSB vacuum: 
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e.g.

At LHC: EW/VV precision strong enough not to interfere with Higgs measurements
8 Higgs primaries (SM deformations that are not constrained, at LO, outside Higgs physics)

Not true at future colliders ⇒ need a more global strategy and a full EFT fit of Higgs+EW data
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Assuming h is part of  a SU(2) doublet
Gupta, Pomarol, Riva ‘14

http://arxiv.org/abs/arXiv:1405.0181
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Impact of Z-pole measurements
Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements

J. De Blas et al. 1907.04311
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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Impact of Z-pole measurements
Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements
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Impact of Z-pole measurements

• FCC-ee and CEPC benefit a lot (>50% on HVV) from Z-pole run

• FCC-ee and CEPC EW measurements are almost perfect for what concerns Higgs physics (<10%).          

Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements
J. De Blas et al. 1907.04311
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
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It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
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• LEP EW measurements are a limiting factor (~30%) to Higgs precision at ILC, especially for the first runs
            But EW measurements at high energy (via Z-radiative return) help mitigating this issue
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Impact of Z-pole measurements
Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements
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Figure 2: Global one-sigma reach of future lepton colliders on Higgs and triple-gauge
couplings. The run scenarios and luminosities assumed are listed in figure 1. LEP and SLD
electroweak measurements as well as HL-LHC prospects on Higgs and diboson processes are
included in all projections. Modifications of electroweak parameters (shown in figure 4) are
marginalized over to obtain the prospects displayed as bars, and artificially set to zero to
obtain those shown with triangular marks. For the CEPC and FCC-ee, scenarios without
the future Z-pole (WW threshold) run are shown as light shaded bars (lower edges of the
green marks). For ILC, the results with the inclusion of the ALR measurement at 250 GeV
are shown with yellow marks. The bottom panel highlights the couplings that are a�ected
significantly EW uncertainties. Numerical results are also reported in table 1

parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ

H
and ”gW W

H
, 1.4 for ”g1,Z , and 1.25 for ”gbb

H
at CEPC. The inclusion

of higher-energy runs (
Ô

s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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parameters impact Higgs coupling prospects by less than 10%. The high luminosities col-
lected at the Z pole and the low systematics are crucial in this respect. Removing the future
Z-pole runs (light shaded bars), one observes significant degradations, reaching for instance
factors of 1.7 for ”gZZ
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s = 350, 365 GeV) available for the FCC-ee somewhat mitigates
the impact of an absence of Z-pole run. On the other hand, the WW threshold run has
a rather limited impact on the precision reach for all Higgs and triple-gauge couplings.
It only improves the prospects for ”Ÿ“ by a factor of 1.05 (1.10) at the CEPC (FCC-ee).
The impact of a Z-pole run at circular colliders is further illustrated in figure 3. It shows
the degradation in Higgs and triple-gauge couplings due to EW uncertainties, obtained
by comparison with perfect EW measurement scenarios. The figure of merit employed
is ”g/”g(EW æ 0) ≠ 1 expressed in percent. The solid and dashed lines are respectively
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• Higher energy runs reduce the EW contamination in Higgs coupling extraction



Christophe Grojean HEP Strategies Pheno 2020, May 6, 202016

Impact of Beam Polarisation (@250GeV)

massless fermions to a vector is given by [41, 51]

‡Pe+ Pe≠ = ‡0(1 ≠ Pe+Pe≠)
5
1 ≠ ALR

Pe≠ ≠ Pe+

1 ≠ Pe+Pe≠

6
(2.10)

where ‡Pe+ Pe≠ is the cross section corresponding to a beam polarization of Pe+ and Pe≠

for the e+ and e≠ beam respectively and ‡0 is the unpolarized cross section. ALR is
the intrinsic left right asymmetry of the production cross section. For the SM e+e≠

æ

Zh production channel ALR = 0.1516. The e�ective luminosity, which scales as 1/2(1 ≠

Pe+Pe≠), is enhanced over that for unpolarized beams or that for the positron beam with
no polarization giving a corresponding reduction of statistical uncertainties.

For the ‹‹h production mode, which is driven by W boson fusion, the scaling for the
polarization is simpler. It depends only on the polarization since the reaction is driven
by left-handed fermions and right-handed anti-fermions (i.e. ALR = 1 in equation (2.10)).
Therefore, the scaling from the unpolarized cross section (‡LR) is given by:

‡Pe+ Pe≠ = 1
4‡LR(1 ≠ Pe≠)(1 + Pe+) (2.11)

In this case it is clear that a negative polarization for the electron and a positive polarization
for the positron will enhance the cross-section and the contrary will reduce it.

The prescriptions we adopt for the scaling of statistical uncertainties from one polar-
ization to the other are the following:

• e+e≠
æ Zh : As described in ref. [10], ALR being small, the enhancement in lu-

minosity for the P (e≠, e+) = (≠80%, +30%) beam polarization configuration over
the (+80%, ≠30%) is cancelled out by the slightly lower background in the latter.
Hence, the e�ective di�erence due to the term proportional to ALR in equation (2.10)
is evened out. So we assume that the statistical uncertainties will be the same for the
configurations (±80%, û30%) and can be scaled to other polarization configurations
using equation (2.10) with ALR set to 0.

• e+e≠
æ ‹‹h : Being driven by W boson fusion, we use equation (2.11) to scale the

statistical errors for the di�erent polarizations.

On the other hand, systematic uncertainties are assumed to be polarization independent.
For unpolarized beams, no uncertainty is however associated with the determination of the
polarization.

2.6 Fitting procedures

Two di�erent statistical frameworks were used to implement the global fits performed for
this work. The two procedures were implemented completely separately and the fits were
performed with the same inputs. We describe here the two frameworks and their di�erences.

6
Given left- and right-handed couplings of charged lepton to the Z are respectively proportional to

≠1 + 2s2
W and 2s2

W , this polarization asymmetry is approximated by (1 ≠ 4s2
W )/(1 ≠ 4s2

W + 8s4
W ) and is

very sensitive to the sine of the weak mixing angle sW .

– 12 –

Statistical gain from increased rates

From ee→Zh,  ALR~0.15 so ��80,+30 ⇠ 1.4�0

overall, one could expect 
O(6%) increased coupling sensitivity

Gain is much higher in global EFT fit
since polarisation removes 

degeneracies among operators

Polarisation benefit diminishes 
when other runs at higher energies are added

and basically left only with statistical gain
increased sensitivities Polarised vs. Unpolarised scenarios @ 250GeV

Figure 8: Strengthening in global constraints arising from the introduction of P (e≠, e+) =
(û80%, ±30%) and (û80%, 0%) beam polarizations at a centre-of-mass energy of 250 GeV
(in red and green, respectively) quantified as ”g(unpolarized)/”g(polarized)≠1 expressed in
percent. For comparison, the improvement of constraints brought by a factor 1.12 increase
in luminosity in shown in orange. This factor is the purely statistical gain on e+e≠

æ hZ

and e+e≠
æ ‹‹h rate incurred with (û80%, ±30%) beam polarization. The grey band is

representative of a 5.6% gain (
Ô

1.24 ◊ 0.9 ≠ 1). The numerical inputs for P (e≠, e+) =
(û80%, ±30%) and unpolarized beams are taken from table 1.

imate degeneracies. Including higher-energy runs also reduces degeneracies and therefore
limits the relative impact of beam polarization. Imposing perfect EW measurements only
a�ects ”g1,Z and ”Ÿ“ , increasing the improvement brought by polarization to 40–50% level
as for ”gZZ

H
and ”gW W

H
. Considering EW couplings, the gain on ”gl‹

W
coupling precisions is

commensurate with the purely statistical one and small in the case of and ”gee

Z,R
.

From figure 9 we get some insight into the di�erence in the correlation maps between
the case of the polarized beams and the unpolarized ones. Removing positron polarization
does not change the correlation map of for the polarized beams. It can be seen that ”Ÿ“

is always correlated with ”gee

Z,L
and ”gee

Z,R
. The latter are progressively better constrained

with the growth of energy for the case of polarized beams when compared to unpolarized
as is apparent from table 2. The correlation between ”g1,Z and ”ge‹

W
at all energies is also

distinctive for the case of the polarized beams and absent for unpolarized beams.
Beam polarization also helps controlling systematic uncertainties, an aspect we have

– 24 –

Gain reaches 80%

J. De Blas et al. 1907.04311
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How Did We End Up in the EW Vacuum?
EW phase transition in CH
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EW phase transition in CH

�

0 h

2 3

1

global minimum at 
T � f

global minimum at 
T ⌧ f

deconfined strong sector
unbroken EW symmetry

confinement and EWSB

7

Impact on EW phase transition 
in Composite Higgs.

 (1) SM-like EW phase transition

 (2)-(3) Joint confinement-EW 
phase transitions: very rich 
pheno for EW baryogenesis

28

G. Servant @ ESU-Granada ‘19

Strong 1st order supercooled 
EW phase transition possible
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Structure of the Vacuum?
The EW vacuum breaks SU(2)xU(1) to U(1)em: is this vacuum a local or a global minimum?

But such a vacuum structure
could have interesting cosmological implications:

Higgs inflation,  GW and PBH sourced by Higgs fluctuations@inflation 
Espinosa et al. 1710.11196 and 1804.07732

13

FIG. 7: The power spectrum of the comoving curvature perturbation during the radiation phase obtained in Ref. [11] for
the following Higgs and top masses: mHiggs = 125.09± 0.24 GeV and mtop = 172.47± 0.5 GeV.
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FIG. 8: Power spectra of GWs for the scalar power spectra generated by the mechanism discussed in Ref. [11], compared
with the estimated sensitivities for LISA, the Einstein Telescope, and the design sensitivity of Advanced LIGO + Virgo.
The Higgs and top mass values are mHiggs = 125.09± 0.24 GeV and mtop = 172.47± 0.5 GeV.

and the estimated sensitivity for the proposed Einstein Telescope (ET) [32].
The GW power spectra are shown for di↵erent combinations of the values of the Higgs and top masses where the

symbols m
(±n�)

Higgs
and m

(±n�)

top
indicate their values ±n� away from their central values. A GW power spectrum for

values of the Higgs boson mass mHiggs = 125.09 GeV (the current central value) and mtop = 171.47 GeV, is well
within the reach of LISA. To relate the amount of GWs and the PBH abundance at formation following the proposal
in Ref. [11], one can use the relation MPBH ' 50M�(10�9Hz/f)2. In Fig. 8, we have used that relation to translate
the frequencies of the GW signal in terms of the peak mass of the PBH distribution.
One fundamental information to be drawn from Fig. 8 is that the frequency at the peak depends in a sensitive

Within the SM,  quantum corrections induce a deeper minimum of the Higgs potential 

Andreassen et al. 1707.08124 
see also Chigusa et al 1707.09301The transition rate is super tiny: τEW≈10161 y
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Hierarchy Problem
The potential of an elementary scalar field is highly sensitive to UV physics:

Is the EW vacuum compatible with new physics at higher energy (aka hierarchy/naturalness problem)?

Conspiracy/intelligent design Anthropic selection in multiverse Dynamical screening
Arrange high-scale physics, 
including quantum gravity, 

to give small enough corrections
 to Higgs potential

and gives a correction parametrically of order
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(16⇡2)2
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4
 

M
4
P l

This correction is small because the graviton coupling to a massless, on-shell
particle at zero momentum vanishes, and so the result is proportional to mH .

However, we could also have a three-loop diagram where the graviton couples
to a loop of top quarks,

The correction from this diagram is parametrically of the form

�m
2
H

⇠
6y2

t

(16⇡2)3
m

6
 

M
4
P l

and is much larger because now the gravitons are coupling to o↵-shell states.

If m ⇠ MP l, correction is ⇠
6y2t
16⇡2

M
2
Pl

(16⇡2)2 . Of course at this point we doubt the
validity of our gravity EFT, but this parametrically validates our naive expecta-
tion from the cuto↵ argument, now with ⇤ ⇠ MP l/16⇡2. So even gravitational
physics is su�cient to feed through threshold corrections to the Higgs mass.

The conclusion is that if there are any other states out there, even ones that
only couple to the Higgs gravitationally, they give a threshold correction to the
Higgs mass that is proportional to the mass scale of the new states. We can see
these corrections in MS or any other scheme; they are physical threshold correc-
tions and have unambiguous value. The result using a hard cuto↵ was merely a
placeholder for threshold corrections, which we could only see in MS if we had
actual physical states in the theory.
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Even new physics 
only gravitationally coupled to SM 

can generate large corrections 
because off-shell couplings to gravitons

Add new physics
to stabilise the EW vacuum

Particles and fields are not 
the building block of matter.
Strings and D-branes are.

Non-trivial fluxes generate multiverse

• New spacetime symmetry 
(supersymmetry)

• New forces/new particles
(composite Higgs)

• New vacua

Supersymmetry!
(new space-time!
symmetry)

Composite Higgs

Multiverse

anthropic principle?

— Challenge —

More conservative approach

M. Reece @ Pheno 2020 N. Arkani-Hamed @ Pheno 2020

https://indico.cern.ch/event/858682/contributions/3840424/attachments/2032715/3402456/Reece_Pheno_2020.pdf
https://indico.cern.ch/event/858682/contributions/3840430/
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Structure of the Vacuum?
Dynamical screening of the UV corrections to Higgs potential

 Single vacuum  Multiple vacua
New particles 

with couplings related to SM ones by 
symmetry cancel the large corrections 

1. a symmetry (Susy, PQ)
2. a form factor (composite Higgs)

many metastable vacua with a vast range of values for mH

Dynamical selection of mH≪Λ

1. The patches with different Higgs VEVs expand 
differently: either they shrink to nothing and they 
expand too fast and no particle reheating 
possible. The patch with the right EW vacuum is 
selected.

2. Relaxion and cosmological scanning with non-
trivial back reaction that stops the exploration of 
the vacuum manifold at the right place 

Low scale of quantum gravity
1. Large extra dimensions (ADD)
2. Gravitational sequestering  (RS)

Combination of the above

TeV scale new physics Light new physics expected
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The log Crisis of the Higgs
The relaxion (Higgs portal) parameter space & the log crisis
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Precision frontier Astro frontier Collider frontier

Higgs vev oscillates DM halo, super radiance Invisible Higgs decays

Rich opportunities
at different scales 

G. Perez et al ’17-‘19

“fun signatures”

Z. Liu @ Pheno 2020

https://indico.cern.ch/event/858682/contributions/3840423/attachments/2032503/3402454/BSM_Opportunities_Pheno2020_ZL.pdf
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Precision Probes BSM
Electric	Dipole	Moment

“Has	killed	more	SUSY	models	than	anything	
else”	(I.	Hinchliffe)

25

• Current	limits:	3.6x10-26 for	neutron,	1.1x10-29 for	electron
– Lepton	and	quark	EDMs	are	complementary	tests	of	new	physics

• Advancements	planned	in	future	experiments:	factors	~10-1000
• Observation	would	be	clear	evidence	for	new	physics

Lepton	Flavour	Violation:	( → )	and	+ → ℓ
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Several	dedicated	experiments	coming	
online	in	near	future	for	( → )	decay		
or	transition	in	Europe,	US	and	JapanSM:	BR<10-54

BSM

Figures	from	A-K	Perrevoort

The Mu2e 
Experiment
at Fermilab
STEVEN BOI ,  UNIVERSITY OF VIRGINIA

ON BEHALF OF THE MU2E COLLABORATION

NUFACT 2018

8/13/2018 THE MU2E EXPERIMENT AT FERMILAB: NUFACT 2018 1

MEG and MEG-II experiments (                 )
BGs: accidental BGs and radiative muon decay 
Signal: monochromatic, back-to-back, and produced at the same time.

PSI has the most intense DC muon beam up to            .
The final result of MEG (2016) 

MEG-II is an upgrade of all sub-detectors.
First physics run will start in 2020
Expectation in 3 years run is                           .

Future experiments:  Next target is                      .            
Hear Iwamoto-san or see slide of Renga @ CLFV conf.
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Schedule of muon LFV searches

Muon LFV searches will be interesting next decade (2020’s).
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Several	dedicated	experiments	coming	
online	in	near	future	for	( → )	decay		
or	transition	in	Europe,	US	and	JapanSM:	BR<10-54

BSM

Figures	from	A-K	Perrevoort
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Schedule of muon LFV searches

Muon LFV searches will be interesting next decade (2020’s).
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COMET

Electric	Dipole	Moment
“Has	killed	more	SUSY	models	than	anything	
else”	(I.	Hinchliffe)
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• Current	limits:	3.6x10-26 for	neutron,	1.1x10-29 for	electron
– Lepton	and	quark	EDMs	are	complementary	tests	of	new	physics

• Advancements	planned	in	future	experiments:	factors	~10-1000
• Observation	would	be	clear	evidence	for	new	physics

EDM LFV

M. Reece @ Pheno 2020

https://indico.cern.ch/event/858682/contributions/3840424/attachments/2032715/3402456/Reece_Pheno_2020.pdf
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Illustration: adding light new physics (NP)
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Constraining new light force-mediators by isotope shift spectroscopy
Supplementary Material

Julian C. Berengut, Dimtry Budker, Cédric Delaunay, Victor V. Flambaum, Claudia Frugiuele, Elina Fuchs,
Christophe Grojean, Roni Harnik, Roee Ozeri, Gilad Perez, and Yotam Soreq

I. VISUALIZING THE VECTOR SPACE

In the main text we define the following vectors in the A
0 vector space

�!
m⌫i ⌘

⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
, (S1)

����!
m�hr

2
i ⌘

�
hr

2
iAA0

1
/µAA0

1
, hr

2
iAA0

2
/µAA0

2
, hr

2
iAA0

3
/µAA0

3

�
, (S2)

�!
mµ ⌘ (1, 1, 1) . (S3)

As long as �!
m⌫1,2 are spanned by �!

mµ and
����!
m�hr

2
i, the resulting King plot will be linear. In Fig. S1, we illustrate the

vector space of the various components related to isotope shifts that leads to the nonlinearites. The NP contribution

to IS, ↵NPXi
~h, may lift the IS vectors from the (�!mµ,

����!
m�hr

2
i) plane, resulting in a nonlinear King plot. Fig. S2

illustrates a nonlinear King plot, where the area of the triangle corresponds to the NL of Eq. (6).

the plane spanned by �!
mµ and

����!
m�hr

2
i

����!
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2
i

�!
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�!
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�!
m⌫2
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����!
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2
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����!
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�!
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= ↵NPXi
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FIG. S1: Left: A cartoon of the prediction of factorization, Eq. (5) in vector language. All of the isotope shift measurements

(which are here three dimensional vectors �!m⌫1,2) lie in the plane that is spanned by �!mµ and
����!
m�hr2i. This coplanarity can be

tested by measuring whether �!m⌫1,
�!m⌫2 and �!mµ are coplanar. Right: In the presence of new physics the isotope shift get a

contribution which can point out of the plane. A new long range force can spoil the coplanarity of �!m⌫1,
�!m⌫2 and �!mµ.
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FIG. S2: Illustration of nonlinearity in the King plot of the isotope shifts �!m⌫1,2, as defined in Eq. (4), in isotope pairs
AA0

j , j = 1, 2, 3. The area of the triangle corresponds to the NL of Eq. (6).
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Search for Higgs-mediated interactions in atoms 
using optical atomic clock spectroscopy

Basic idea: look at difference of differences, of transition energies, to clean up 
nuclear mess …

We do it in steps: first consider transition between two levels the emitted 
photon has some characteristic energy/frequency, �E = E(n0, l0)� E(n, l) .

O(10-18) sensitivity in atomic clock measurements

can be used to detect new (long range) forces

2004.11383
Yb+ King plot (300 Hz)

2005.00529
Ca+ King plot (20 Hz)

Spectacular experimental progress
very recently

State of the art: King Linearity holds in Ca+ (1:104)   

13

No indication for King-linearity-violation (KLV), down to 100 kHz.

when comparing two different transitions and can be
eliminated in a King plot analysis [28,29] as shown in
Fig. 3 for the two transitions considered here. Each axis
shows the modified isotope shift mδνA;A

0 ¼ δνA;A
0
gA;A

0
,

where gA;A
0 ¼ ð1=mA − 1=mA0Þ−1, for one of the two

transitions. A straight line fit to the three data points
provides linear combinations of the field and mass shift
constants for the two transitions. An important result from
this fit is that there is no evidence for a deviation from a
straight line, confirming that (2) is a good parametrization
of the isotope shift even at the high experimental accuracy
of the measurements presented here.

A comparison of the high resolution results with pre-
vious experimental data based on collinear laser spectros-
copy [10,11] shows systematic deviations, which can be
used to calibrate experimental parameters of this technique.
Following Ref. [12] we performed a three-dimensional
King plot analysis to extract the fitting parameters kMS and
F for the two transitions. Two dimensions are those shown
in Fig. 3. In the third dimension we plot the modified
change in mean-square nuclear charge radius δhr2iA;A0

gA;A
0
,

using the previous values of δhr2i from [30], which are
based on muonic atom spectroscopy and electron scatter-
ing. The three-dimensional King plot constrains the mass
and field-shift constants, and under the assumption that (2)
is correct (i.e., the three data points are connected by a
straight line) can also be used to extract improved values of
δhr2i. To find the parameter estimates and their uncertain-
ties an acceptance-rejection Monte Carlo method was used
to generate samples consistent with the measured values
and associated uncertainties [31]. The measurement dis-
tributions were assumed to be independent uncorrelated
normals. The likelihoods of three randomly generated
points, constrained to be collinear, were used as the
acceptance criterion in the algorithm. The extracted param-
eters are shown in Table II.
The extracted field-shift and mass-shift constants pose a

strong challenge for many-body atomic theory (fourth
column of Table II), where the mass shift in particular
has proven very difficult to calculate even in the “easy” case
of single-valence-electron ions [32,33]. A comparison to
the experimental field and mass shift constants given in
[10,11] proves difficult since the derived uncertainties
depend strongly on the analysis technique and input
parameters for δhr2i. Evaluating the field and mass shift
constant from isotope shifts given in [10,11] using the
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FIG. 3 (color online). Two-dimensional King plot showing the
modified isotope shift of the 866 nm and 397 nm lines. Red
squares, previous experimental data from [10] and [11]; blue
circles, this Letter. The insets show the relevant ranges enlarged
by a factor of approximately 30 to illustrate the quality of the fit.

TABLE II. Parameters of three-dimensional King plot seeded with values of δhr2iA;40 taken from [30]. The units
for the field Fi and mass ki shift constants and the changes in mean square nuclear charge radii δhr2ij;40 are
MHz fm−2, GHz amu, and fm2, respectively. For comparison the second column for the previous data shows results
for the analysis using isotope shift data taken from [10] and [11] analyzed with the methods used in this Letter.

Parameter Previous This work Theory

F397 −283ð6Þa −281ð34Þ −281.8ð7.0Þ −285ð3Þa
−287b

k397 405.1(3.8)a 406.4(2.8) 408.73(40) 359b

427d

F866 79(4)c 80(13) 87.7(2.2) 88a

92b

k866 −1989.8ð4Þc −1990.9ð1.4Þ −1990.05ð13Þ −2207b
−2185d

δhr2i42;40 0.210(7) 0.210(7) 0.2160(49)
δhr2i44;40 0.290(9) 0.290(9) 0.2824(65)
δhr2i48;40 −0.005ð6Þ −0.005ð6Þ −0.0045ð60Þ
aMårtensson-Pendrill et al. [10].
bSafronova and Johnson [32].
cNörtershäuser et al. [11].
dThis work, based on the methods in [33].
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FIG. 1: Limits on the electron and neutron couplings (yeyn)
of the new boson of mass m� (for the experimental accuracies
�i specified in the labels). Constraint from existing IS data:
Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
(dashed lines) for Ca+ (S ! D transitions), Sr+, Sr/Sr+,
and Yb+. For comparison, existing constraints from other
experiments (shaded areas): fifth force [19, 20] (dark orange),
(g � 2)e [21, 22] combined with neutron scattering [23–26]
(light blue) or SN1987A [27] (light orange), and from star
cooling in globular clusters [28–30] (orange). The gray line at
17MeV indicates the yeyn values required to accommodate
the Be anomaly [31, 32].

of-the-art experimental precision, and baring cancellation
between the SM and NP contributions, world-record sen-
sitivity in a certain mass range will be achieved.

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization properties
of IS which we use to probe NP in this work. Consider an
atomic transition, denoted by i, between narrow atomic
states. The di↵erence in the transition frequency ⌫ com-
paring the isotopes A and A

0 is the IS,

⌫
AA0

i ⌘ ⌫
A
i � ⌫

A0

i . (1)

At leading order (LO) the IS receives contributions from
two sources, mass shift (MS) and field shift (FS). Mass
shift arises due to a correction to the kinetic energy of
atomic electrons due to the motion of the nucleus. For
independent electrons, this is just replacing me by the
reduced mass but if electrons are correlated, this could
be orders of magnitude larger. Field shift originates from

di↵erent contact interactions between electrons and nu-
clei in isotopes. Putting these two leading contributions
together, the IS can be phenomenologically written as

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + . . . , (2)

where the two terms represent MS and FS respec-
tively [16, 33]. We define µAA0 ⌘ m

�1
A � m

�1
A0 , where

mA and mA0 are the masses of isotopes A and A
0.

The quantity �hr
2
iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr

2
iAA0 are purely nuclear quantities that do not de-

pend on the electronic transition i. Note, however, that
µAA0 is known with high precision, whereas �hr

2
iAA0 is

known only to a limited accuracy. The parameters Ki

and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values are
unnecessary in the observable we construct. Each term
of Eq. (2) is a product of a purely nuclear quantity and a
purely electronic quantity, resulting in the factorization
of nuclear and electronic dependence. This is known as
LO factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr

2
iAA0 giving a relation between the

isotope shifts ⌫
AA0

1 and ⌫
AA0

2 . In terms of the modified
IS1, m⌫

AA0

i ⌘ ⌫
AA0

i /µAA0 , this relation is,

m⌫
AA0

2 =K21+F21m⌫
AA0

1 , (3)

with F21 ⌘ F2/F1, and K21 ⌘ K2 � F21K1.
Equation (3) reveals a linear relation between m⌫1 and

m⌫2, giving rise to a straight line in the so-called King
plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
pairs in two transitions, which constitutes a purely data
driven test of LO factorization.

The formulae in our treatment of NP will be simplified
greatly by introducing a geometrical description of LO
factorization. As we will now explain, King linearity is
equivalent to coplanarity of vectors. For each transition
i, we can form a vector

�!
m⌫i ⌘

⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
. (4)

The nuclear parameters of field and mass shift, µAA0 and

�hr
2
iAA0 can also be written as vectors �!

mµ and
����!
m�hr

2
i

in the same space (notice that �!
mµ ⌘ (1, 1, 1)) and hence

Eq. (2) becomes

�!
m⌫i = Ki

�!
mµ + Fi

����!
m�hr

2
i. (5)

1
Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .
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can only probe long-range force 
(no bound on e- Yukawa, unfortunately)
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Conclusions

All projects of Higgs factories have a rich potential to outperform (HL-)LHC:
* Legacy measurements that will go into textbook

* Reach in BSM discoveries
* Refinements in our understanding of Nature (EW phase transition, naturalness…)

The Higgs discovery revealed a non-trivial and rich vacuum.
The true vacuum of our world might have an even richer structure than the SM one.

Exciting promises for great discoveries at different scales.

But there is also a complementary and vibrant diversity program worldwide

• Beam Dump Facility (SHiP, TauFV)
• eSPS (LDMX)
• CPEDM (Julich), ESSvSB (ESS), 

PERLE(Saclay), LFV(PSI), ...

• COMPASS/AMBER as QCD facility, 
MUonE, KLEVER, nuSTORM,  

MATHUSLA, FASER, CODEX-b, 
milliQan, LHCSpin, REDTOP, DIRAC, ... 
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BONUS PLOTS
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The Higgs boson hasn’t taught us much about Beyond the Standard Model physics yet.
Bottom-up rigidity of the SM: given the low-energy spectrum, all the Higgs couplings are uniquely fixed

(GF, mW, mZ, mquark, mlepton)

current (and future) LHC sensitivity 
O(10-20)% ⇔ ΛBSM > 500(g*/gSM) GeV 

not doing better than direct searches unless in the case of strongly coupled new physics
(notable exceptions: New Physics breaks some structural features of the SM

e.g. flavour number violation as in h→µτ)

New physics can alter this structure and induce a deformation of the Higgs couplings:
�gh
gh

⇠ v2

f2
=

g2⇤ v
2

⇤2
BSM

Higgs precision program is very much wanted to probe BSM physics

1% is also a magic number to probe naturalness of EW sector

High Energy Physics with a Higgs
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EFT and Higgs couplings
EFT fits can be performed in different bases (difficult to compare results among different analyses)

and seldom the meaning on the sensitivity on the various Wilson coefficients is transparent

— Practical approach — 
perform the fit in any basis you like and project the results on effective/pseudo couplings

EFT studies at future colliders

• Compare Future Collider sensitivity to deformations of Higgs couplings in a 
basis-independent way


• Project EFT fit results into (pseudo) observable quantities 

• Not enough to match EFT d.o.f : Add also aTGC


• Similarly, for EW interactions, project results into effective Zff couplings 
defined from EWPO, e.g.
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operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.

�Z!e+e� = ↵ MZ

6 sin2 ✓w cos2 ✓w

(|ge

L
|
2 + |g

e

R
|
2), Ae = |ge

L
|2�|ge

R
|2

|ge

L
|2+|ge

R
|2 . (15)

In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.
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• Effective couplings 
Direct connection to experimental measurements Connection to UV less direct
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Ignoring CKM e↵ects
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1.3 Higgs couplings
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For Higgs decays, we make use of the results in Ref. [16]. The Decay widths to a pair
of fermions are
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The decay width to WW ú ZZú (with 4f final states) are given by

�W W ú

�SM

W W ú
ƒ 1 + 2 ”cZ + 0.05 cZZ + 0.67 cZ⇤ ≠ 0.05 c““ ≠ 0.17 cZ“ , (D.5)

�ZZú

�SM

ZZú
ƒ 1 + 2 ”cZ ≠ 0.15 cZZ + 0.41 cZ⇤ , (D.6)

where we assume there is no NP correction to the gauge couplings of fermions. As stated
in Section 2, we do not consider contribution from o�-shell photons that gives the same
final states as ZZú, as they can be relatively easily removed by kinematic cuts.

The decay of Higgs to gg, ““ and Z“ are generated at one-loop level in the SM. The
leading EFT contribution could either be at tree level (which are generated in the UV
theory by new particles in the loop) or come at loop level by modifying the couplings in
the SM loops. As mentioned in Section 2, we follow Ref. [16] and include both the tree
level EFT contribution (cgg) and the one-loop contribution (from ”yt and ”yb) for h æ gg,
while only keeping the tree level EFT contribution (c““ and cZ“) for h æ ““ and h æ Z“.
The decay widths are given by 12

�gg

�SM
gg

ƒ 1 + 241 cgg + 2.10 ”yt ≠ 0.10 ”yb , (D.7)

and
�““

�SM
““

ƒ (1 + c““

≠8.3 ◊ 10≠2
)2 ,

�Z“

�SM

Z“

ƒ (1 + cZ“

≠5.9 ◊ 10≠2
)2 . (D.8)

The branching ratio can be derived from the total decay width, which can be obtained
from

�tot

�SM
tot

=
ÿ

i

�i

�SM

i

BrSM

i
. (D.9)

12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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production cross sections (but this is collider specific)
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operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
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�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.
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In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.

10

Effective Higgs couplings

Only these are described in κ-framework

(need a special care for top coupling and self-coupling)

EFT studies at future colliders

• Compare Future Collider sensitivity to deformations of Higgs couplings in a 
basis-independent way


• Project EFT fit results into (pseudo) observable quantities 

• Not enough to match EFT d.o.f : Add also aTGC


• Similarly, for EW interactions, project results into effective Zff couplings 
defined from EWPO, e.g.


Presentation of SMEFT fit results

�21
Jorge de Blas 
INFN - University of Padova

Open Symposium - Update of the European Strategy for Particle Physics 
Granada, May 14, 2019

operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.

�Z!e+e� = ↵ MZ

6 sin2 ✓w cos2 ✓w

(|ge

L
|
2 + |g

e

R
|
2), Ae = |ge

L
|2�|ge

R
|2

|ge

L
|2+|ge

R
|2 . (15)

In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.

10

March 21, 2019J. de Blas

Presentation of EFT fits results

�5

• Effective couplings 
Direct connection to experimental measurements Connection to UV less direct
Try to define from physical observables⇒Basis independent

LCC = �
ep
2s

�
1 + �

U
gCC

�
W

+
µ

✓
�ij +

⇣
�
D
U

†
L

⌘

ij

◆
⌫
i

L
�
µ
e
j

L
+

�
�
D
VR

�
ij
u

i

R
�
µ
d
j

R
+

+
⇣
Vij +

�
�
D
VL

�
ij
+ Vij�

I
Vij

⌘
u

i

L
�
µ
d
j

L

i
+ h.c.

(22)

LCC = �
ep
2s

�
1 + �

U
gCC

�
W

+
µ

h⇣
�ij +

�
�
D
UL

�
ij

⌘
⌫
i

L
�
µ
e
j

L
+

�
�
D
VR

�
ij
u
i

R
�
µ
d
j

R
+

⇣
�ij +

�
�
D
VL

�
ij

⌘
u
i

L
�
µ
d
j

L

i
+ h.c.

(23)

Ignoring CKM e↵ects
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12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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e.g. in Higgs basis

For Top Yukawa and Higgs self-coupling one could define them from the  
production cross sections (but this is collider specific)

At linear order and collecting enough (pseudo-)observables this is just a change into 
a more “physical” basis (close to Higgs basis except for hVV)

Similar definition as κ modifiers, but different interpretation, e.g.

+ … (EW Vff, hVff)

operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.
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In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.
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ē

i

L
e

i

R
h + g

ii

huu
ū
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The decay width to WW ú ZZú (with 4f final states) are given by
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where we assume there is no NP correction to the gauge couplings of fermions. As stated
in Section 2, we do not consider contribution from o�-shell photons that gives the same
final states as ZZú, as they can be relatively easily removed by kinematic cuts.

The decay of Higgs to gg, ““ and Z“ are generated at one-loop level in the SM. The
leading EFT contribution could either be at tree level (which are generated in the UV
theory by new particles in the loop) or come at loop level by modifying the couplings in
the SM loops. As mentioned in Section 2, we follow Ref. [16] and include both the tree
level EFT contribution (cgg) and the one-loop contribution (from ”yt and ”yb) for h æ gg,
while only keeping the tree level EFT contribution (c““ and cZ“) for h æ ““ and h æ Z“.
The decay widths are given by 12
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The branching ratio can be derived from the total decay width, which can be obtained
from
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12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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e.g. in Higgs basis

For Top Yukawa and Higgs self-coupling one could define them from the  
production cross sections (but this is collider specific)

At linear order and collecting enough (pseudo-)observables this is just a change into 
a more “physical” basis (close to Higgs basis except for hVV)

Similar definition as κ modifiers, but different interpretation, e.g.

+ … (EW Vff, hVff)

operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.

�Z!e+e� = ↵ MZ

6 sin2 ✓w cos2 ✓w

(|ge

L
|
2 + |g

e

R
|
2), Ae = |ge

L
|2�|ge

R
|2

|ge

L
|2+|ge

R
|2 . (15)

In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.

10

Effective Higgs couplings

Only these are described in κ-framework
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Higgs Self-Coupling
Higgs self-couplings is very interesting for a multitude of reasons 

(vacuum stability, hierarchy, baryogenesis, GW, EFT probe…). 

How much different from the SM can it be given the tight constraints on other Higgs couplings?
Do you need to reach HH production threshold to constrain h3 coupling?• Comparison of capabilities to measure the H3 coupling 

Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

The Higgs self-coupling
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How to measure deviations of λ
3

di-Higgs single-H

exclusive

global

1. di-H, excl.
• Use of σ+HH,             

 • only deformation of κλ

3. single-H, excl.
• single Higgs processes at higher order
• only deformation of κλ                          

2. di-H, glob.
• Use of σ+HH,                                                  
• deformation of κλ + of the single-H couplings
+a, do not consider the effects at higher order 

of κλ to single H production and decays
+b,  these higher order effects are included    

4. single-H, glob.
• single Higgs processes at higher order
• deformation of κλ + of the single Higgs 

couplings

 The Higgs self-coupling can be assessed using di-Higgs production and 
single-Higgs production

 The sensitivity of the various future colliders can be obtained using four 
different methods:

*

λ
g�

g
*

gmin

1

0
4π

λ = √gmin g*
─

λ = gmin

FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

C. Cross section of double Higgs production

We can now discuss our parametrization of the cross section of double Higgs production

via gluon fusion. We will use the non-linear Lagrangian (4) and start by neglecting higher-

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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Hadron collider Lepton collider
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [55–57] and even the
electroweak precision observables [58–60]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [61, 62] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [63]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)

Thus, to be competitive with the HL-LHC constraint, the ZH cross section needs to be measured with an accuracy below 1%,
but this is expected to be achieved by e+e� Higgs factories at 240/250 GeV. However, other single Higgs coupling modifications
also change the ZH cross section, and these different dependencies must be disentangled via a global fit of Higgs data. Not
surprisingly, such global fits to single Higgs data often suffer from some degeneracy among the different Higgs coupling
deviations which are significantly reduce with extra information from kinematical differential distributions or from inclusive
rate measurements performed at two different energies (see for instance the k3 sensitivities reported in Table 11 for FCC-ee240
vs FCC-ee365; note that it is the combination of the two runs at different energies that improve the global fit, a single run at
365 GeV alone would not do much better than the single run at 240 GeV).

Note that, in principle, large deformations of k3 could also alter the fit of single Higgs processes often performed at leading
order, i.e. neglecting the contribution of k3 at next-to-leading order. It was shown in [61] that a 200% uncertainty on k3 could
for instance increase the uncertainty in gHtt or geff

Hgg by around 30–40%.
In order to set quantitative goals in the determination of the Higgs self-interactions, it is useful to understand how large

the deviations from the SM could be while remaining compatible with the existing constraints on the different single Higgs
couplings. From an agnostic point of view, the Higgs cubic coupling can always be linked to the independent higher dimensional
operator |H|6 that does not alter any other Higgs couplings. Still, theoretical considerations set an upper bound on the deviation
of the trilinear Higgs couplings. Within the plausible linear EFT assumption discussed above, perturbativity imposes a maximum
deviation of the Higgs cubic self-interaction, relative to the SM value, of the order of [24, 61]

|k3|⇠< Min(600x ,4p) , (27)

where x is the typical size of the deviation of the single Higgs couplings to other SM particles [27]. However, the stability
condition of the EW vacuum, i.e. the requirement that no other deeper minimum results from the inclusion of higher dimensional
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Figure 10.2: From Ref. [275], sample Feynman diagrams illustrating the effects of the Higgs trilinear
self-coupling on single Higgs process at next-to-leading order.

Figure 10.3: Indirect measurements of the Higgs self-coupling at FCC-ee combining runs at different
energies.

are equally important to fix extra parameters that would otherwise enter the global Higgs fit and open flat
directions that cannot be resolved.

10.5 FCC-hh: Direct Probes
At FCC-hh, the Higgs self-coupling can be probed directly via Higgs-pair production. The cross sec-
tions for several production channels are given [276] in Table 10.1, where the quoted systematics reflect
today’s state of the art, and are therefore bound to be significantly improved by the time of FCC-hh
operations.

The most studied channel, in view of its large rate, is gluon fusion (see Fig. 10.1). In the SM
there is a large destructive interference between the diagram with the top-quark loop and that with the
self-coupling. While this interference suppresses the SM rate, it makes the rate more sensitive to possible
deviations from the SM couplings, the sensitivity being enhanced after NLO corrections are included, as
shown in the case of gg!HH in Ref. [277], where the first NLO calculation of �(gg!HH) inclusive of
top-mass effects was performed. For values of � close to 1, 1/�HHd�HH/d� ⇠ �1, and a measure-
ment of � at the few percent level requires therefore the measurement and theoretical interpretation of

120
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ECFA Higgs study group ‘19

50% sensitivity: establish that h3≠0 at 95%CL
20% sensitivity: 5σ discovery of the SM h3 coupling

5% sensitivity: getting sensitive to quantum corrections to Higgs potential

0 10 20 30 40 50
 [%]3κ68% CL bounds on 

CLIC

CEPC

ILC

FCC-ee

FCC-ee/eh/hh

HE-LHC

HL-LHC

under HH threshold

under HH threshold

di-Higgs single-Higgs

All future colliders combined with HL-LHC

50%
HL-LHC

50% (47%)
HL-LHC

[10-20]%
HE-LHC

50% (40%)
HE-LHC

5%
FCC-ee/eh/hh

25% (18%)
FCC-ee/eh/hh

15%
LE-FCC

n.a.
LE-FCC

-17+24%
    3500FCC-eh

n.a.
    3500FCC-eh

 24% (14%)
     4IP

365FCC-ee

 33% (19%)
     365FCC-ee

 49% (19%)
     240FCC-ee

10%
1000ILC

36% (25%)
1000ILC

27%
 500ILC

38% (27%)
 500ILC

 49% (29%)
 250ILC

 49% (17%)
CEPC

-7%+11%
3000CLIC

49% (35%)
3000CLIC

36%
1500CLIC

49% (41%)
1500CLIC

 50% (46%)
 380CLIC

Higgs@FC WG November 2019 Don’t need to reach HH threshold 
to have access to h3. 

Z-pole run is very important 
if the HH threshold cannot be reached

1

The determination of h3 at FCC-hh 
relies on HH channel, 

for which FCC-ee is of little direct help.
But the extraction of h3 

requires precise knowledge of yt.
1% yt ↔ 5% h3

Precision measurement of yt needs ee

2

Higgs Self-Coupling
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Experimental Inputs

Jorge de Blas 
INFN - University of Padova

Open Symposium - Update of the European Strategy for Particle Physics 
Granada, May 14, 2019

Higgs (and EW) physics at Future Colliders

�19

• Inputs included in the fits (from ESU documents and Refs. therein):


Higgs aTGC EWPO Top EW

FCC-ee Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom.) Yes Yes (365 GeV, Ztt)

ILC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (HE limit) LEP/SLD (Z-pole) + 

HL-LHC + W (ILC) Yes (500 GeV, Ztt)

CEPC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom) Yes No

CLIC Yes (μ, σΖΗ) Yes (Full EFT 
parameterization)

LEP/SLD (Z-pole) + 
HL-LHC + W (CLIC) Yes 

HE-LHC Extrapolated from 
HL-LHC N/A → LEP2 LEP/SLD 


+ HL-LHC (MW, sin2θw) -

FCC-hh
Yes (μ, BRi/BRj) 


Used in combination 
with FCCee/eh

From FCC-ee From FCC-ee -

LHeC Yes (μ) N/A → LEP2 LEP/SLD 

+ HL-LHC (MW, sin2θw) -

FCC-eh
Yes (μ) 


Used in combination 
with FCCee/hh

From FCC-ee From FCC-ee 

+ Zuu, Zdd -

Warning

Warning

Warning

A circular ee Higgs factory
starts as a Z/EW factory

(TeraZ)  

A linear ee Higgs factory
operating above Z-pole

can also preform 
EW measurements 

via Z-radiative return

A linear ee Higgs factory
could also operate on the

Z-pole though at lower lumi
(GigaZ)

Not included in the analyses yet
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Theoretical UncertaintiesImpact of SM theory uncertainties

�37
Jorge de Blas 
INFN - University of Padova

Open Symposium - Update of the European Strategy for Particle Physics 
Granada, May 14, 2019
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• Sensitivity to NP depends on accuracy of SM calculations. Distinguish 2 types of 
uncertainties:


• Parametric theory uncertainties: For an observable O, this is the error 
associated to the propagation of the experimental error of the SM input 
parameters to the prediction OSM .


• Intrinsic theory uncertainties: Estimate of the net size associated with the 
contributions to OSM from missing higher-order corrections in perturbation 
theory.


• Somewhat artificial distinction (Exp. determination of SM inputs rely in SM 
calculations, e.g. QED), but useful to isolate the effect of theory uncertainties in 
certain calculations


• To isolate effects of SM Higgs uncertainties from others (e.g. EWPO) we use the 
SMEFTPEW benchmark scenario


• Focus the comparison on results at future lepton collider Higgs factories


Are current projections for SM theory uncertainties in Higgs processes 
enough compared to the expected experimental sensitivity?

ECFA Higgs study group ‘19

Theorists

can do better

in few channels

(hZZ, hbb…) 
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Theoretical UncertaintiesImpact of SM theory uncertainties
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• Sensitivity to NP depends on accuracy of SM calculations. Distinguish 2 types of 
uncertainties:


• Parametric theory uncertainties: For an observable O, this is the error 
associated to the propagation of the experimental error of the SM input 
parameters to the prediction OSM .


• Intrinsic theory uncertainties: Estimate of the net size associated with the 
contributions to OSM from missing higher-order corrections in perturbation 
theory.


• Somewhat artificial distinction (Exp. determination of SM inputs rely in SM 
calculations, e.g. QED), but useful to isolate the effect of theory uncertainties in 
certain calculations


• To isolate effects of SM Higgs uncertainties from others (e.g. EWPO) we use the 
SMEFTPEW benchmark scenario


• Focus the comparison on results at future lepton collider Higgs factories


Are current projections for SM theory uncertainties in Higgs processes 
enough compared to the expected experimental sensitivity?

ECFA Higgs study group ‘19

Theorists

can do better

in few channels

(hZZ, hbb…) 

Jorge de Blas 
INFN - University of Padova

KAIST-KAIX Workshop for Future Particle Accelerators 
Daejeon, July 8, 2019

Will SM theory calculations be enough?

�32

Theory requirements for EWPOCentral EW precision (pseudo-)observables at the Z pole
FCC-ee: update of Blondel et al., 1901.02648 (in prep.); ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic theory uncertainty

current ILC FCC-ee current current source prospect

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 α3,α2αs,αα
2
s 0.15

∆ sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 α3,α2αs 1.5

∆Rb[10
−5] 66 14 6 11 α3,α2αs 5

∆Rℓ[10
−3] 25 3 1 6 α3,α2αs 1.5

Theory requirements for Z-pole pseudo-observables:

• needed: ⋄ EW and QCD–EW 3-loop calculations

⋄ 1 → 2 decays, fully inclusive

• problems: ⋄ technical: massive multi-loop integrals, γ5

⋄ conceptual: pseudo-obs. on the complex Z-pole

↪→ Enormous challenge, but feasible (anticipating progress + support!)

Stefan Dittmaier, Precision Electroweak Calculations Symposium on the European Strategy, Granada, May 2019 – 7

Prospects: Extrapolation assuming EW & QCD 3-loop corrections are known

Current: Full 2-loop corrections ⇒ Not enough for future Exp. precision

Technically challenging but feasible (with enough support)

ꔅ

More theory work needed to match EXP uncertainties

Need TH results to fully exploit Tera-Z
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Improvements of EW measurements

Table 37. Comparison of the sensitivity at 68% probability to new physics contributions to
EWPO in the form of the oblique S and T parameters, under different assumptions for the SM
theory uncertainties. We express the results in terms of the usually normalised parameters: S =
4 sin2 ✓wŜ/↵ and T = T̂ /↵.

HL-LHC HL-LHC+

CLIC380 CLIC380 ILC250 ILC250 CEPC FCC-ee

(+GigaZ) (+GigaZ)

S Full ThIntr Unc. 0.053 0.032 0.013 0.015 0.012 0.01 0.0079
No ThIntr Unc. 0.053 0.032 0.011 0.012 0.009 0.0068 0.0038

No ThPar+Intr Unc. 0.052 0.031 0.0091 0.011 0.0067 0.0031 0.0013
T Full ThIntr Unc. 0.041 0.023 0.013 0.015 0.014 0.0094 0.0058

No ThIntr Unc. 0.041 0.023 0.012 0.014 0.013 0.0072 0.0022
No ThPar+Intr Unc. 0.039 0.022 0.01 0.011 0.0091 0.0041 0.0019

2-σ region
HL-LHC
HL+CLIC380
HL+ILC250
HL+CEPC
HL+FCCee

HL+CLIC380,Giga Z
HL+ILC250,Giga Z

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

T

S

Figure 17. (Left) 2-� regions in the S � T plane at the different future colliders, combined with
the HL-LHC (including also the LEP/SLD EWPO programme). We express the results in terms
of the usually normalised parameters: S = 4 sin2 ✓wŜ/↵ and T = T̂ /↵. The results include the
future projected parametric uncertainties in the SM predictions of the different EWPO, but not the
intrinsic ones. (Right) The same illustrating the impact of neglecting such intrinsic theory errors.
For each project (including the Giga-Z option for linear colliders) the solid regions show the results
in the left panel, to be compared with the regions bounded by the dashed lines, which include the
full projected theory uncertainty.
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H Consistency of electroweak precision data
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Figure 18. Constraints on mW and mtop from direct measurements (horizontal and vertical lines)
and indirect constraints (ellipses). In all cases the constraints from current data plus HL-LHC are
compared to the ones expected for the e+e� collider.

I Improvement with respect to HL-LHC

Figures 19 and 20 give a graphic comparison of the improvement with respect to HL-LHC
in the Kappa-3 and SMEFT-ND frameworks. This improvement is shown as the ratio of the
precision at the HL-LHC over the precision at the future collider, with more darker colors
corresponding to larger improvement factors. The kappa-3 result shows large improvements,
up to an order of magnitude, for all future ee colliders for the measurement of the couplings
to Z, W and b and the limits on the invisible branching ratio, and an ’infinite’ improvement

– 97 –

ECFA Higgs study group ‘19

The importance of improved EW measurements is twofold:
1) reduced parametric uncertainties 

2) reduced degeneracies in a global fit for Higgs couplings

w/. stat.+syst. 
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I Improvement with respect to HL-LHC

Figures 19 and 20 give a graphic comparison of the improvement with respect to HL-LHC
in the Kappa-3 and SMEFT-ND frameworks. This improvement is shown as the ratio of the
precision at the HL-LHC over the precision at the future collider, with more darker colors
corresponding to larger improvement factors. The kappa-3 result shows large improvements,
up to an order of magnitude, for all future ee colliders for the measurement of the couplings
to Z, W and b and the limits on the invisible branching ratio, and an ’infinite’ improvement
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ECFA Higgs study group ‘19

The importance of improved EW measurements is twofold:
1) reduced parametric uncertainties 

2) reduced degeneracies in a global fit for Higgs couplings

Patrick Janot

2-σ region
(EWPO: stat. unc. only)
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A couple physics plots from FCC France
q Fit to S and T parameters (representing loop corrections to the Z andW propagators)

u From Jorge de Blas, with only statistical and parametric uncertainties

l The true potential of FCC-ee is one order of magnitude better
è Next step: Devise experimental and theoretical methods to match statistics !

21 Nov. 2019
FCC-ee physics coordination meeting

10

w/o syst.
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Impact of Z-pole measurements

Contamination EW/TGC/Higgs can be 
understood by looking at correlations

Figure 11: A scheme-ball illustration of the constraints on and correlations between all
the e�ective couplings with and without a Z-pole run at CEPC and FCC-ee.

at FCC-ee ”Ÿ“ is also correlated with ”gee

Z,L
. Therefore, when one assumes perfect EW

measurements shown with the white dots on the on the left side of the scheme-ball, the
bounds on the these couplings in the Higgs sector are significantly stronger as they are
a�ected by the assumption we make about the EW measurements.

The lighter colours, orange, green and light grey, mark the bar plots and correlations
for the case where we include the Z pole runs for CEPC (240 GeV) and FCC-ee (240 GeV
and 240+365 GeV), respectively. All of the large correlations between the e�ective Higgs
couplings and the EW couplings drop o� leaving only correlations between ”Ÿ“ and ”ge‹

W

for all energies. Correlations between ”gZZ

H
and ”g1,Z remain as significant correlations

between the e�ective Higgs couplings and the aTGCs for the 240 GeV runs at both CEPC

– 31 –

Higgs

TGCEW

Without Z-pole runs, there are large 
correlations between EW and Higgs

J. De Blas et al. 1907.04311
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a�ected by the assumption we make about the EW measurements.

The lighter colours, orange, green and light grey, mark the bar plots and correlations
for the case where we include the Z pole runs for CEPC (240 GeV) and FCC-ee (240 GeV
and 240+365 GeV), respectively. All of the large correlations between the e�ective Higgs
couplings and the EW couplings drop o� leaving only correlations between ”Ÿ“ and ”ge‹

W

for all energies. Correlations between ”gZZ

H
and ”g1,Z remain as significant correlations

between the e�ective Higgs couplings and the aTGCs for the 240 GeV runs at both CEPC

– 31 –

Higgs

TGCEW

With Z-pole runs, only correlations 
between EW and TGC remain

J. De Blas et al. 1907.04311
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Higgs

TGCEW

Figure 12: Changes in correlations between couplings depending on the precision of EW
measurements assumed. The top row is for CEPC and the bottom two rows are for FCC-ee.
HL-LHC projections are included for all scenarios.

and FCC-ee .
The change in the correlations from one EW scenario to another for both CEPC and

FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by
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FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole these two sectors get decoupled. While we see from table 1 that the
assumption of perfect EW measurements and the case for the inclusion of a Z-pole run give
numerically similar bounds for both the colliders, from figure 12 we see that the correlation
maps are di�erent. It can then be understand from these variations of the correlation map
why ”Ÿ“ is still a�ected by the EW assumptions made even after the inclusion of EW
measurements from a Z-pole run at the lepton colliders since the bound on it is diluted by
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Z-pole runs at circular colliders isolate 
EW and Higgs sectors from each others

w/o Z-pole run w/ Z-pole run

J. De Blas et al. 1907.04311



Christophe Grojean HEP Strategies Pheno 2020, May 6, 202034

δgZ,L
ee δgZ,R

ee δgW
eν δgZ,L

μμ δgZ,R
μμ δgW

μν δgZ,L
ττ δgZ,R

ττ δgW
τν δgZ,L

uu δgZ,R
uu δgZ,L

dd δgZ,R
dd δgZ,L

bb δgZ,R
bb10-6

10-5

10-4

10-3

10-2

10-1

1

10-6

10-5

10-4

10-3

10-2

10-1

1
precision reach on EW couplings from full EFT global fit

HL-LHC S2 + LEP/SLD
CEPC Z/WW/240GeV
FCC-ee Z/WW/240GeV
FCC-ee Z/WW/240GeV/365GeV

ILC 250GeV
ILC 250GeV/350GeV
ILC 250GeV/350GeV/500GeV

CLIC 380GeV
CLIC 380GeV/1.5TeV
CLIC 380GeV/1.5TeV/3TeV

P(e-,e+)=(∓0.8,±0.3) P(e-,e+)=(∓0.8, 0)

light shade: CEPC/FCC-ee without Z-pole
CEPC/FCC-ee without WW threshold
Higgs measurements excluded

lepton colliders are combined with HL-LHC & LEP/SLD
imposed U(2) in 1&2 gen quarks

Z@250GeV S1
Z@250GeV S2

Z@380GeV S1
Z@380GeV S2

Figure 4: Global one-sigma reach on electroweak couplings for the same scenarios as in
figure 2. Higgs and triple-gauge coupling modifications are marginalized over. Trapezoidal
and green marks respectively indicate the prospects obtained with Higgs and WW threshold
measurements excluded. The numerical results are reported in table 2.

absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new

– 17 –

Sensitivity on EW couplings
J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311
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Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-
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liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
detector simulation, resolved photon production, and minute systematic uncertainties are
fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
the triple-gauge coupling ”Ÿ“ . If additional electroweak measurements appear insu�cient
to control EW uncertainties contaminations to a satisfactory level, collecting some amount
of luminosity at lower centre-of-mass energies might be advantageous.

Other than the prospects on the Higgs and triple-gauge couplings provided in figure 2,
we present in figure 4 projections for the rest of electroweak couplings in the same run
scenarios. Numerical results are provided in table 2. Note that the only electroweak
measurements included in HL-LHC projections only are that of diboson production [57]
and of the W mass [78]. They are combined with LEP and SLD ones. The latter will
continue to dominate the constraints on Z-boson couplings to fermions until until a new
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absolute constraints. This is a consequence of the fact that high centre-of-mass energies
drastically improve constraints only on specific combinations of parameters including elec-
troweak coupling modifications [54]. Relative degeneracies are thus e�ectively enhanced.

Besides e+e≠
æ W +W ≠, other electroweak measurements could help controlling elec-

troweak uncertainties in the centre-of-mass energy range envisioned for future linear col-
liders. One could for instance exploit the lower tail of the beam energy spectrum to access
the Z pole through radiative return [76], or resolved photon emission in association with a
Z boson (e+e+

æ Z“), or di-Z production. Radiative return to the Z pole has for instance
been considered with measurements of the left-right production asymmetry ALR, as well
as improvements in the measurements of Z decays and asymmetries in final states with
charged leptons, b- and c-quarks. Preliminary prospects for the determination of ALR at
Ô

s = 250 GeV claim the relative statistical error can be reduced to about 0.1% [77], a
factor of 15 improvement with respect to the 1.5% one obtained by SLD [50]. The dom-
inant uncertainties associated to the knowledge of polarization are included and seem to
be smaller than the statistical ones. Still this estimate will need to be confirmed after full
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fully accounted for. As illustration, we nevertheless display the improvement that would
be brought by such a measurement with yellow marks in figure 2. It would mostly benefit
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of luminosity at lower centre-of-mass energies might be advantageous.
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Impact of Diboson Systematics

parison with the prospects obtained without Higgs measurements, shown with trapezoidal
marks. Sizeable e�ects are only seen, at linear colliders, on the Z-boson couplings to
electrons. Those would also be the most a�ected by an improvement of the left-right
polarization asymmetry ALR mentioned earlier. At the HL-LHC, the impact of Higgs mea-
surements on EW couplings is only visible for the gauge couplings of the light quarks, of
down type in particular (d and s), which are poorly constrained at LEP and SLD. The
V h and diboson production processes, mostly initiated by light quarks at the LHC, are
sensitive to these couplings [55].

In addition to the precision reach of each coupling, the correlations among them also
contain important information, and are particularly relevant for understanding the inter-
play of Higgs and EW measurements. To avoid showing a large set of 28 ◊ 28 matrices,
we present a scheme-ball illustration in figure 5, which highlights large correlations with
lines connecting pairs of couplings in its inner circle. The circular collider projections in-
clude both Z-pole and WW threshold measurements. At linear colliders, the EW and the
Higgs sector appear clearly connected due to the absence of new Z-pole measurements.
Strong correlations are present between aTGCs and other electroweak couplings. This
clearly shows again that the electroweak, triple-gauge, and Higgs sectors of the e�ective
field theory would become significantly entangled with the advent of future lepton colliders.

We further investigate the impacts of diboson measurements and beam polarizations
in the rest of this section.
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Figure 6: Impact of diboson measurement precision on Higgs and triple-gauge couplings.
Our default assumption, adopted in figure 2, is also shown here as dark-shaded bars. It
corresponds to an overall e�ciency ‘ of 50% (see section 2.3). The results obtained with
an ideal 100% and a lower 1% e�ciency are shown as vertical lines and light shaded bars
respectively. The run scenarios of the future lepton colliders are summarized in figure 1.

As explained in section 2.3, our prospects for WW measurements neglect backgrounds,
detector e�ects and systematic uncertainties but assume a conservative overall e�ciency
‘ of 50%. We examine in figure 6 the impact of di�erent assumptions for ‘ on Higgs and
triple-gauge coupling prospects. This exercise also more generally allows us to visualize
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Figure 13: A comparison of the reach on aTGCs from the binned method used in ref. [58]
and the optimal observables for the diboson measurement at CEPC 240 GeV. To match
ref. [58], we use both the total rate and the normalized distributions of the semileptonic
channel, and impose the TGC dominance assumption. A 80% signal selection e�ciency is
assumed in ref. [58].

As an illustration of the power of the optimal observables, we show in figure 13 a
comparison with the conventional binned distribution method used in ref. [58] for CEPC
240 GeV. To match the inputs and assumptions of ref. [58], we use both the total rate and
the normalized distributions of the semileptonic channel of e+e≠

æ WW , make the TGC
dominance assumption and perform a global fit among the three aTGCs. If a 80% signal
selection e�ciency is assumed as in ref. [58], we observe a factor of 4-5 improvement in
”g1,Z and ⁄Z with the use of optimal observables, and a some what smaller improvement
(by a factor of ≥ 2) for ”Ÿ“ . In particular, a better discrimination between ”g1,Z and ⁄Z

is achieved using optimal observables, which reduced the strong correlation between them
from ≠0.9 (of the binned distribution method) to ≠0.6. The improvement is still outstand-
ing even with the conservative 50% e�ciency used in our analysis. Note however that they
remain degeneracies between Higgs and EW parameters that cannot be resolved with WW

measurements alone, even with optimal use of the available di�erential information.

Treatment of Higgsstrahlung production The three relevant angles in the process
e+e≠

æ hZ, Z æ ¸+¸≠ are the production polar angle and the Z decay polar and azimuthal
angles. In refs. [71, 72], the information contained in angular distributions was extracted
using asymmetries. While this approach captures all the essential information, the corre-
lations among the asymmetry observables are omitted, which results in a reduction in the
sensitivity. We instead construct statistically optimal observables from these three angles
using equation (D.6) and (D.7), keeping only the linear CP-even EFT dependences. We
use only the h æ bb̄ and Z æ e+e≠/µ+µ≠ channel, which is almost background free after
the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the
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• Positron polarisation doesn’t play a big role (for Higgs couplings determination)

• If 250GeV run only: electron polarisation improves significantly (>50%) hVV determination

• Polarisation-benefit diminishes (in relative and absolute terms) when other runs at higher energies are added
36

Impact of Beam Polarisation
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Figure 7: Global one-sigma reach on Higgs and triple-gauge couplings at the ILC, for three
di�erent beam polarization configurations. Electroweak measurements from LEP and SLD
as well as HL-LHC projections are included in all scenarios. Electroweak parameters (not
shown) are marginalized over.

”gZ“

H
su�ers from an accidental suppression for unpolarized beams. The h æ Z“ measure-

ment at the HL-LHC however e�ectively constrain this coupling, so that the loss in reach
incurred without beam polarization is limited. Additional measurements of the hZ process
at higher energies improve the reach on ”gZ“

H
but also make it more sensitive to the polar-

izations. For ”g1,Z and ”Ÿ“ , the discriminating power provided by the higher-energy runs
is also insu�cient to o�set the enhanced degeneracies in the diboson process, as observed
previously in figure 2. Losing the handle of beam polarizations thus further enhances the
degeneracies and reduces the reach.

Focusing on the 250 GeV run, figure 8 further highlights the complementarity of op-
posite beam polarization configurations for lifting approximate degeneracies. It shows the
relative improvement obtained between polarized and unpolarized scenarios. The cases of
P (e≠, e+) = (û80%, ±30%) and (û80%, 0%) beam polarization configurations are respec-
tively displayed in red and green. For reference, the gain expected from the increase in sheer
rate is displayed as orange lines. It is obtained by artificially augmenting luminosities by a
factor of 1.24◊0.9 ƒ 1.12 in our default unpolarized beam scenario. The factor of 1.24 is the
statistical increase in the precision of the hZ cross-section determination when adopting a
P (e≠, e+) = (û80%, ±30%) configuration (following the prescription of equation (3.3)) and
the same for ‹‹h. Note that no such statistical gain is obtained in the absence of positron
polarization. The factor of 0.9 is compensating for the 10% of luminosity collected with
same-sign polarization configuration and not used in our prospects.

As already noted above, polarized beams induce sizeable improvement (up to 80%) in
the precision achievable on several Higgs couplings, while positron beam polarization has a
marginal impact. As seen in the figure, this improvement is often much larger than the bare
statistical gain in hZ and ‹‹h rate due to polarization (up to 5.6% shown by the grey line).
Runs with two di�erent polarization configurations are indeed e�ective in reducing approx-
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