Searches for heavy BSM particles coupling to third generation quarks at CMS

James Dolen
Purdue University Northwest

Phenomenology 2020 Symposium - May 5th, 2020
“Heavy BSM particles coupling to third generation quarks”

Signatures which fall into this category:

Vector-like Quarks

- $T \rightarrow bW$
- $T \rightarrow tZ$
- $T \rightarrow tH$

- $B \rightarrow tW$
- $B \rightarrow bZ$
- $B \rightarrow bH$

Single production
(ex. T in association with t and b)

Pair production
(ex. TT, BB, etc.)

Resonances

- Heavy resonance → standard model
 (ex. $Z' \rightarrow tt$, $W' \rightarrow tb$)

- Heavy resonance → vector-like quarks
 (ex. $Z' \rightarrow tT$, $Z' \rightarrow TT$, $W' \rightarrow bT$)

- Excited quark
 (ex. $b^* \rightarrow tW$, $t^* \rightarrow tg$)

- Leptoquark
 (ex. $LQ \rightarrow \tau\nu$, $LQ \rightarrow t\mu$)
Signatures which fall into this category:

Vector-like Quarks
- \(T \to bW \)
- \(T \to tZ \)
- \(T \to tH \)
- \(B \to tw \)
- \(B \to bZ \)
- \(B \to bH \)

Resonances
- Heavy resonance \(\to \) standard model
 - (ex. \(Z' \to tt, W' \to tb \))
- Heavy resonance \(\to \) vector-like quarks
 - (ex. \(Z' \to tT, Z' \to TT, W' \to bT \))
- Excited quark
 - (ex. \(b^* \to tW, t^* \to tg \))
- Leptoquark
 - (ex. \(LQ \to t\tau, LQ \to t\mu \))

Today: Highlight three of the most recent searches using 2016 CMS data
Jet-tagging Menu
Utilize jet substructure to tag partially or fully merged jets

- **W-jet**:
 - W to q, \bar{q}

- **Z-jet**:
 - Z to q, \bar{q}

- **H-jet**:
 - H to b, \bar{b}

- **Unmerged hadronic top**
 - t, w, q, \bar{q}

- **Partially merged hadronic top**
 - $(W \text{ jet} + b \text{ jet})$

- **Fully merged hadronic top jet**
 - t, w, q, \bar{q}

- **Leptonic top with non-isolated lepton**
 - t, w, μ, ν
Jet Tagging Tools

- **Jet grooming**
 - Pruning, soft drop

- **N-subjettiness**
 - Determines how consistent a jet is with having N or fewer subjets
 - Better discrimination by using ratios (ex. τ_3/τ_2)

- **Subjet b-tagging**

- **Boosted Event Shape Tagger (BEST)**
 - Neural network approach: When boosting to ‘correct’ reference frame, jet constituents should be isotropic and show the N-prong structure
Search for vector-like T quark

- Vector-like top quark partner T with charge 2/3
- Electroweek production (either charged current or neutral current)
- Hadronic final states

Search for vector-like T quark

- **T → tH or T → tZ**
- **All-hadronic channel → principal backgrounds QCD and ttbar**
- **Low mass search** - resolved jets from decays of t, H, Z
 - Five jet final state
 - Chi-squared sorting algorithm used to associate jets with t/W/Z/H
 - Further signal discrimination using relative HT (majority of transverse momentum in the event should originate from t and H/Z candidates) and angular variables
- **High mass search** - merged jets from decays of t, H, Z
 - At least 1 t-tag and 1 H/Z tag
Search for vector-like T quark

- **Low mass search**
 - Three signal regions based on b-tagging
 - 3 tight working point b-tagged jets, 3 medium working point b-tagged jets, 2 medium 1 loose working point b-tagged jets

- **High mass search**
 - Six mutually exclusive control regions used to predict the shape of the QCD background

- No significant excess above the SM found
 - Limits set for T-singlet model
 - Four fractional widths considered
Search for TT in the fully hadronic state

- Search for pair produced vector-like quarks (optimized for TT but BB also so considered)
- Decay products of T are highly boosted → merged within one jet
- Two analyses
 - Cut-Based approach
 - targets $T \rightarrow bW$
 - Utilize W-tagging and b-tagging
 - Neural Net Multiclassification approach
 - Broad search for TT or BB
 - Utilize Boosted Event Shape Tagger (BEST) to identify t, W, H, Z

Search for TT in the fully hadronic state

- **Cut-based analysis**
 - Require two Anti-KT $R=0.8$ jets and two Anti-KT $R=0.4$ jets
 - Two possible combinations of b and W jet. Assignment of jets to T candidate is made such that T candidate mass difference is minimized.
 - Categorize based on the number of W-tags and b-tags - 9 regions

- **Neural Net analysis**
 - BEST algorithm used to classify jets into 6 categories: t, b, W, Z, H, light
 - Require exactly 4 jets
 - Categorize based on number of classified jets: 126 independent signal regions
Search for TT in the fully hadronic state
Search for TT in the fully hadronic state

- No significant deviation found
- Limits set
Search for resonant tT production

- Heavy spin-1 resonance Z'
- Decaying to a top quark and a vector-like top quark partner T
- Benchmark model - Kaluza-Klein Gluon

Search for resonant tT production

- Optimized for $T \rightarrow tZ$ or $T \rightarrow tH$
- Two principal decay channels:
 - $Z' \rightarrow tT \rightarrow tZt$
 - $Z' \rightarrow tT \rightarrow tHt$
- Require one top to decay leptonically and other top hadronically
 - Search channel: lepton+jets
 - Leptonic top - non-isolated lepton
 - Hadronic top may be merged within a single jet
- H or Z is typically produced with large momentum \rightarrow collimated decay products \rightarrow utilize jet substructure
Search for resonant $t\bar{t}$ production

- Categorize events using jet substructure and subjet b-tagging
- Search for an excess in the reconstructed Z' mass distribution

H_{2b} tag + t tag
H_{2b} tag + no t tag
H_{1b} tag + t tag
H_{1b} tag + no t tag
Z/W tag + t tag
Z/W tag + no t tag
Search for resonant tT production

- No significant excess observed
- Observed limits depend on mass of Z', mass of T, and branching ratio

Kinematically forbidden

No signal samples

Suppressed by the preferred $Z \rightarrow TT$ mode
Conclusion

- Broad search program at CMS for heavy BSM particles decaying to third generation quarks
- Motivated models
- No significant excess found in 2016 data
 - Analysis of much more data to come!

Vector-like Quarks
- $T \rightarrow bW$
- $B \rightarrow tW$
- $T \rightarrow tZ$
- $B \rightarrow bZ$
- $T \rightarrow tH$
- $B \rightarrow bH$

Resonances
- Heavy resonance \rightarrow standard model (ex. $Z \rightarrow tt, W \rightarrow tb$)
- Heavy resonance \rightarrow vector-like quarks (ex. $Z \rightarrow tT, Z \rightarrow Tt, W \rightarrow bT$)
 - Excited quark (ex. $b^* \rightarrow tW, t^* \rightarrow tg$)
 - Leptoquark (ex. $LQ \rightarrow tt, LQ \rightarrow t\mu$)
Additional Slides
CMS Data 2016

- $\sqrt{s} = 13$ TeV
- 35.9 fb$^{-1}$
- Average pileup = 27
Top and W jet validation in data

- **Semileptonic ttbar selection** → very pure sample of boosted Ws

 - Muon + one b-tag

 - Data-MC scale factors measured

 ![Diagram of top and W jet validation](image)

 ![Histograms and plots showing data vs. MC for W-subject mass and P_T](image)

James Dolen (Purdue University Northwest)
Double b-tagged H-jet

CMS DP 2017/032

CMS Experiment at LHC, CERN
Data recorded: Wed Dec 31 19:00:00 1969 EDT
Run/Event: 1 / 363
Lumi section: 2
Orbit/Crossing: -1 / -1
Jet grooming

Algorithmic jet substructure techniques designed to remove isolated soft radiation in jets (contamination from ISR, UE, pileup)

Trimming, Filtering - Reclassify jets with smaller distance parameter. Condition based subjet removal.
- Reclassify small R
- Trimming: Remove soft subjets
- Filtering: Keep N hardest

Pruning - Reclassify jet. Remove soft large angle particles.
- Redo clustering remove soft large angle constituents

BDRS, MMDT, Soft Drop, JHU top tagger, CMSTT - Recursively decluster jet. Remove sub-clusters not satisfying algorithm condition. Stop declustering when both subjets satisfy condition.
- Decluster iteratively
- Remove sub-clusters not satisfying some criterion
- Stop when both subjets satisfy criterion

Reduces jet mass dependence on pileup
Reduces measured QCD jet mass (improves discrimination)
Improved jet mass resolution for boosted heavy object

Boosted W jet mass before grooming
Boosted W jet mass after grooming

QCD jet mass before grooming
QCD jet mass after grooming

J. Dolen

CMS Simulation

CMS HIG-13-008
H → WW → lνqq

Boosted W jet mass
QCD jet mass

Improved jet mass resolution for boosted heavy object