

Searches for heavy BSM particles coupling to third generation quarks at CMS

James Dolen Purdue University Northwest

Phenomenology 2020 Symposium - May 5th, 2020

"Heavy BSM particles coupling to third generation quarks"

Signatures which fall into this category:

Resonances

Heavy resonance \rightarrow standard model (ex. Z` \rightarrow tt, W` \rightarrow tb)

Heavy resonance \rightarrow vector-like quarks (ex. $Z` \rightarrow tT$, $Z` \rightarrow TT$, $W` \rightarrow bT$)

Excited quark (ex. $b^* \rightarrow tW, t^* \rightarrow tg$)

Leptoquark (ex. LQ \rightarrow t τ , LQ \rightarrow t μ)

"Heavy BSM particles coupling to third generation quarks"

Signatures which fall into this category:

Today: Highlight three of the most recent searches using 2016 CMS data

Jet Tagging Tools

Boosted Top Jet, R = 0.8

J. Thaler, K. Van Tilburg,

JHEP 2011:15

0.5

1.5

5.5

4.5

0

- Jet grooming
 - Pruning, soft drop
- N-subjettiness
 - Determines how consistent a jet is with having N or fewer subjets
 - Better discrimination by using ratios (ex. τ_3/τ_2)
- Subjet b-tagging
- Boosted Event Shape Tagger (BEST)
 - Neural network approach: When boosting to 'correct' reference frame, jet constituents should be isotropic and show the N-prong structure

Search for vector-like T quark

- Vector-like top quark partner T with charge 2/3
- Electroweek production (either charged current or neutral current)
- Hadronic final states

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-18-003/index.html JHEP 01 (2020) 036

Search for vector-like T quark

- $T \rightarrow tH \text{ or } T \rightarrow tZ$
- All-hadronic channel \rightarrow principal backgrounds QCD and ttbar •
- Low mass search resolved jets from decays of t,H,Z
 - Five jet final state
 - Chi-squared sorting algorithm used to associate jets with t/W/Z/H
 - Further signal discrimination using relative — HT (majority of transverse momentum in the event should originate from t and H/Z candidates) and angular variables
- High mass search merged jets from decays of t,H,Z
 - At least 1 t-tag and 1 H/Z tag -

Search for vector-like T quark

Low mass search

- Three signal regions based on b-tagging
 - 3 tight working point b-tagged jets, 3 medium working point b-tagged jets, 2 medium 1 loose working point b-tagged jets

<u>High mass search</u>

- Six mutually exclusive control regions used to predict the shape of the QCD background
- No significant excess above the SM found
 - Limits set for T-singlet model
 - Four fractional widths considered

- Search for pair produced vector-like quarks (optimized for TT but BB also so considered)
- Decay products of T are highly boosted → merged within one jet
- Two analyses

- Cut-Based approach
 - targets T \rightarrow bW
 - Utilize W-tagging and b-tagging
- Neural Net Multiclassification approach
 - Broad search for TT or BB
 - Utilize Boosted Event Shape Tagger (BEST) to identify t, W, H, Z
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-18-005/index.html

$T \rightarrow bW$	$B \rightarrow tW$
$T \rightarrow tZ$	$B \rightarrow bZ$
$T \rightarrow tH$	$B \rightarrow bH$

- Cut-based analysis
 - Require two Anti-KT R=0.8 jets and two Anti-KT R=04 jets
 - Two possible combinations of b and W jet. Assignment of jets to T candidate is made such that T candidate mass difference is minimized.
 - Categorize based on the number of W-tags and b-tags 9 regions
- Neural Net analysis
 - BEST algorithm used to classify jets into 6 categories: t, b, W, Z, H, light
 - Require exactly 4 jets
 - Categorize based on number of classified jets: 126 independent signal regions

James Dolen

11

- No significant deviation found
- Limits set

- Heavy spin-1 resonance Z'
- Decaying to a top quark and a vector-like top quark partner T
- Benchmark model Kaluza-Klein Gluon

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-17-015/index.html

- Optimized for $T \rightarrow tZ$ or $T \rightarrow tH$
- Two principal decay channels:
 - $Z \rightarrow tT \rightarrow tZt$
 - $Z \rightarrow tT \rightarrow tHt$

- Require one top to decay leptonically and other top hadronically
 - Search channel: lepton+jets
 - Leptonic top non-isolated lepton
 - Hadronic top may be merged within a single jet
- H or Z is typically produced with large momentum → collimated decay products → utilize jet substructure

14

- Categorize events using jet substructure and subjet b-tagging
- Search for an excess in the reconstructed
 Z` mass distribution

 $[\]begin{array}{l} H_{2b} \ tag \ + t \ tag \\ H_{2b} \ tag \ + no \ t \ tag \\ H_{1b} \ tag \ + t \ tag \\ H_{1b} \ tag \ + no \ t \ tag \\ Z/W \ tag \ + t \ tag \\ Z/W \ tag \ + no \ t \ tag \end{array}$

- No significant excess observed
- Observed limits depends on mass of Z', mass of T, and branching ratio

Conclusion

- Broad search program at CMS for heavy BSM particles lacksquaredecaying to third generation quarks
- Motivated models
- No significant excess \bullet found in 2016 data
 - Analysis of much more data to come!

	Vector-like Quarks $T \rightarrow bW$ $B \rightarrow tW$ $T \rightarrow tZ$ $B \rightarrow bZ$ $T \rightarrow tH$ $B \rightarrow bH$	Resonances Heavy resonance → standard model (ex. Z` → tt, W` → tb)
е	Single production (ex. <u>T in association with t and b</u>)	Heavy resonance \rightarrow vector-like quarks (ex. $\underline{Z} \rightarrow \underline{tT}$, $Z \rightarrow TT$, $W \rightarrow bT$) Excited quark (ex. b* \rightarrow tW, t* \rightarrow tg)
	Pair production (ex. <u>TT, BB</u> , etc.)	<u>Leptoquark</u> (ex. LQ → tτ, LQ → tµ)

Additional Slides

CMS Data 2016

- $\sqrt{s} = 13 \text{ TeV}$
- 35.9 fb⁻¹
- Average pileup = 27

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

Top and W jet validation in data

Semileptonic ttbar selection → very pure sample of boosted Ws

• Data-MC scale factors measured

Double b-tagged H-jet

Jet grooming

Algorithmic jet substructure techniques designed to remove isolated soft radiation in jets (contamination from ISR, UE, pileup)

