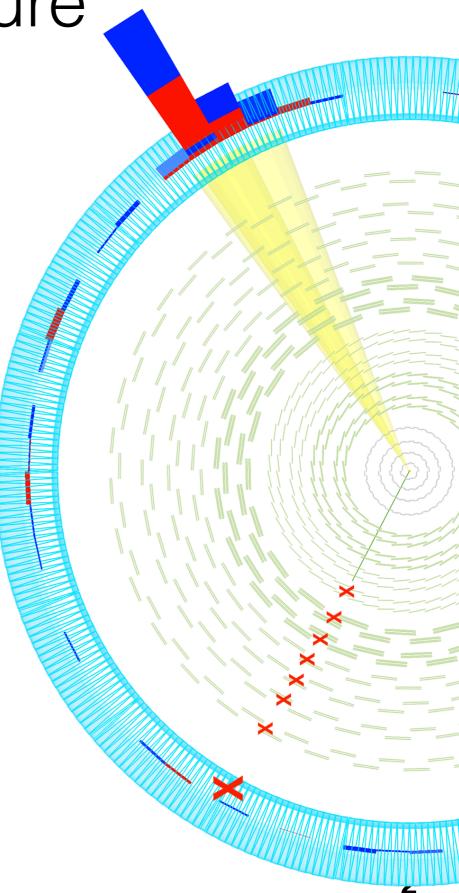


The Ohio State University

Full Run 2 Results for Disappearing Tracks at CMS


Pheno 2020

Brian Francis for the CMS Collaboration

Newly submitted to PLB: <u>arXiv:2004.05153</u> (CMS public page) Featured: <u>cms.cern/news/disappearing-act-cms</u>

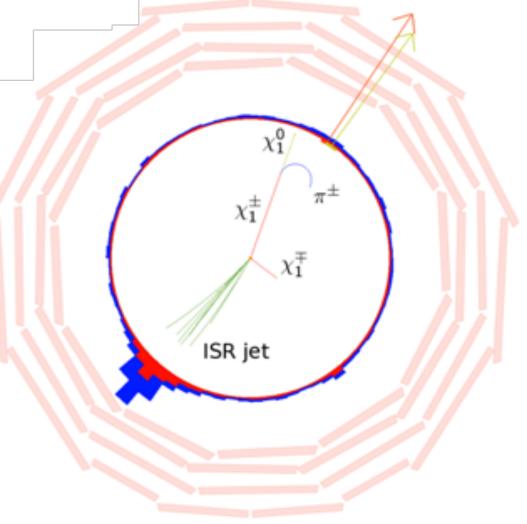
A Striking Signature

- A long-lived charged particle decaying within the CMS tracker
- If the decay products are undetected, the track "disappears"
 - Neutral, weakly interacting
 - Too low momentum to be reconstructed
- Observation would be a striking sign of BSM physics
 - Arises in many models
 - Multiple handles to study decay length, mass, dE/dx, potential recovery of decay products

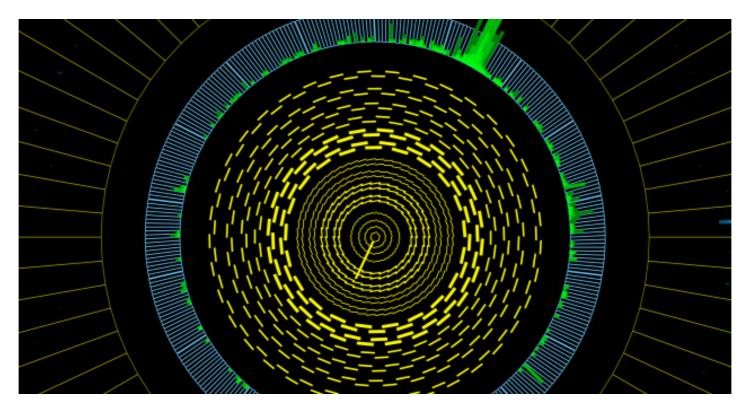
Canonical Benchmark — AMSB

Simulation

- Consider anomaly-mediated supersymmetry breaking (AMSB)
- Small mass splitting between chargino ($\tilde{\chi}^{\pm}\!\!\!$) and neutralino ($\tilde{\chi}^0$)
 - Direct electroweak production:

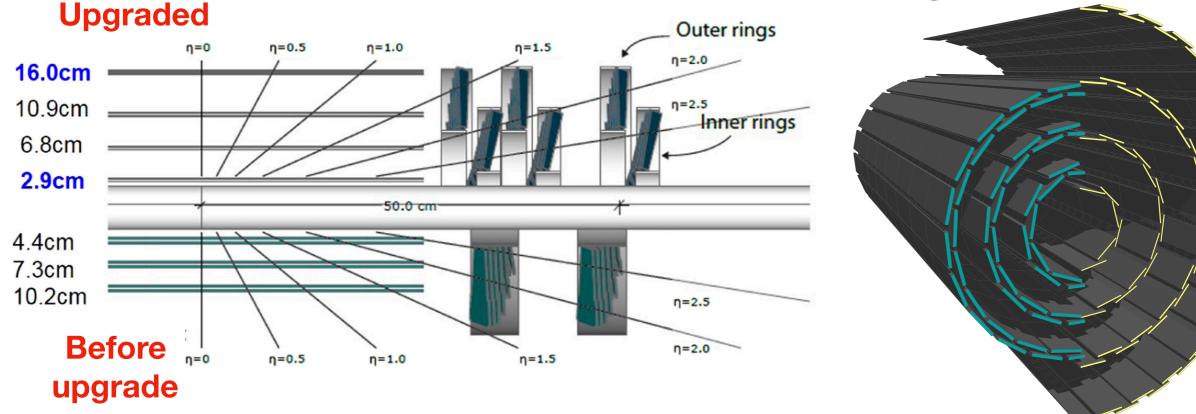

 $pp \to \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}, \, \tilde{\chi}^{\pm} \tilde{\chi}^{0}$

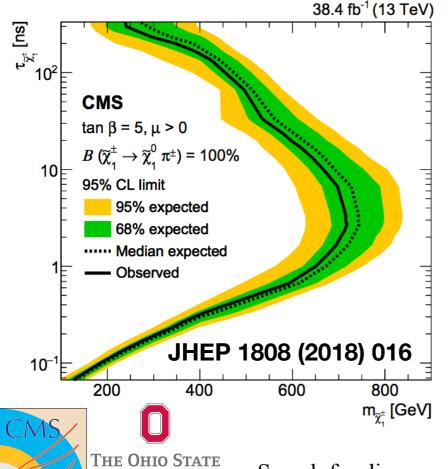
- $\tilde{\chi}^{\pm} \to \pi^{\pm} \chi^0$ with lifetime O(1) ns
- $\tilde{\chi}^0$ interacts only weakly, and $\pi^\pm\,$ is too soft to be reconstructed


AMSB is one benchmark of many that would frequently produce disappearing tracks

Search for disappearing tracks at CMS — Pheno2020

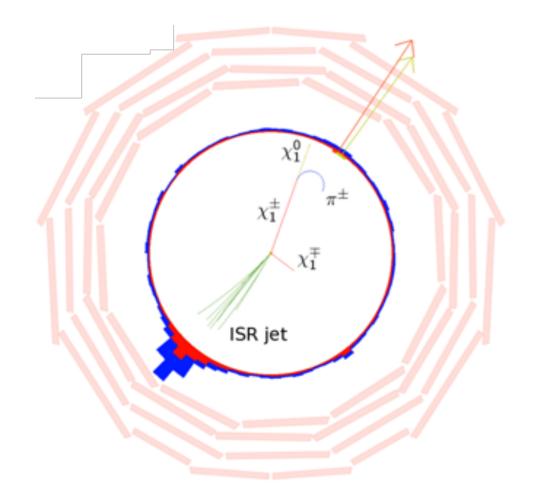
Rare Backgrounds


- SM particles don't disappear, however there are rare backgrounds:
 - Charged hadrons can interact with detector material, e.g.


$$\pi^+ + n \to \pi^0 + p$$

- Leptons can be mis-reconstructed
- Spurious ("fake") tracks pattern recognition errors
- Approach to controlling these:
 - Explore and mitigate all possible ways to lose tracker hits
 - Estimate the remaining probability to fall into search region

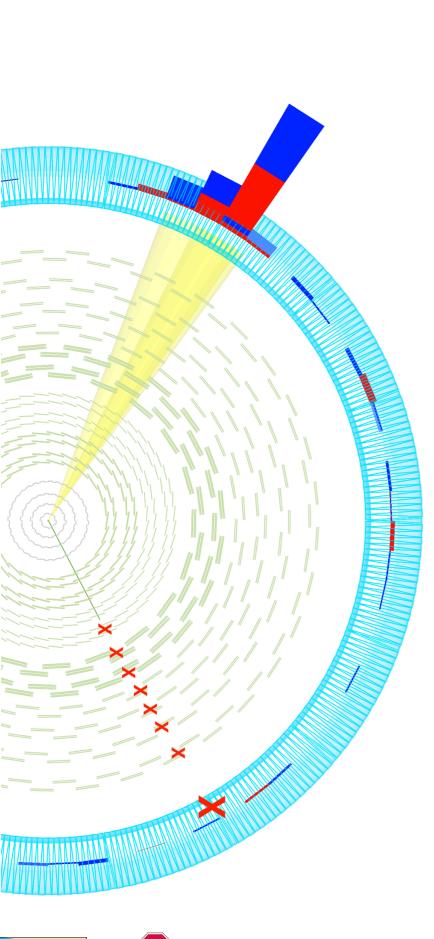
Phase 1 CMS Pixel Upgrade



UNIVERSITY

- CMS previously searched for disappearing tracks (@ 8 and 13 TeV) using a 3-layer pixel tracker
 - Limited sensitivity to short tracks (compared to ATLAS' JHEP 1806 (2018) 022)
- Since 2017 CMS now has a 4-layer pixel tracker
- New analysis bins results in the number of layers with measurements:
 - $n_{\text{layers}} = 4, 5, \ge 6$
 - New sensitivity to shorter particle lifetimes

5


Event Selection

- No tracking information at L1 trigger
 - Trigger on MET from ISR jets at L1
 - At HLT, OR of several MET requirements
 - MET > 105-300 GeV
 - Lowest threshold: MET > 105 GeV and pt > 50 GeV isolated track
- At the offline reconstruction level, require event is consistent with ISR jet
 - MET > 120 GeV
 - ≥ 1 jet with pt > 110 GeV

Search for disappearing tracks at CMS — Pheno2020

Track Selection

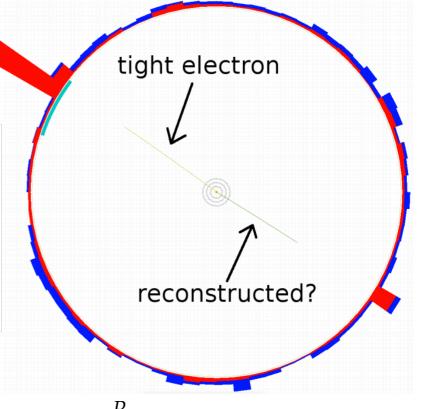
- pt > 55 GeV, isolated from other tracks/jets
- Require high track quality:
 - ≥4 pixel hits
 - No missing inner/middle hits
- Veto all tracks identified as leptons ($e/\mu/\tau_h$)
- Reject tracks in regions of lower lepton reconstruction efficiency
- "Disappearing" is defined as:
 - ≥3 missing outer hits rejects most SM tracks
 - <10 GeV energy deposited within $\Delta R < 0.5$
 - Rejects most electrons and charged hadrons
 - E.g. electrons with significant brem. energy causing a track reconstruction failure

Backgrounds

- Possible for leptons to enter search region
 - Dead/noisy channels, track fitting errors, nuclear interactions with the tracker material, etc
 - Estimate probability for several conditions:

$$N_{\rm est}^{\ell} = \frac{N_{\rm ctrl}^{\ell}}{\epsilon_{\rm trigger}^{\ell}} P_{\rm veto} P_{\rm off} P_{\rm trig} P_{\rm HEM}$$

- "Spurious" tracks: not real charged trajectories, but pattern recognition errors
 - Tend to have missing hits and little associated calorimeter energy
 - Estimate probability of such tracks in Z(µµ) (plus track) events and extrapolate to search region



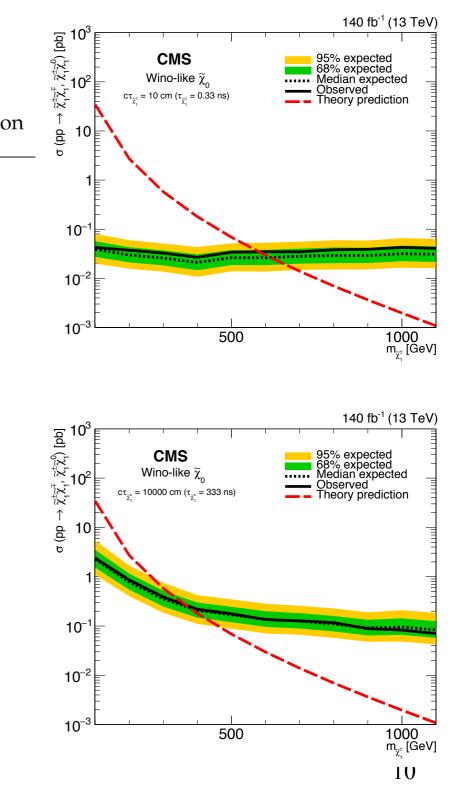
Lepton P(veto)

- Measured using a tag-and-probe method for each flavor
- Calculate the probability for probes to disappear
- Also select a same-sign sample to subtract non-Z background events from T&P sample

ΉΕ ΟΗΙΟ STATE

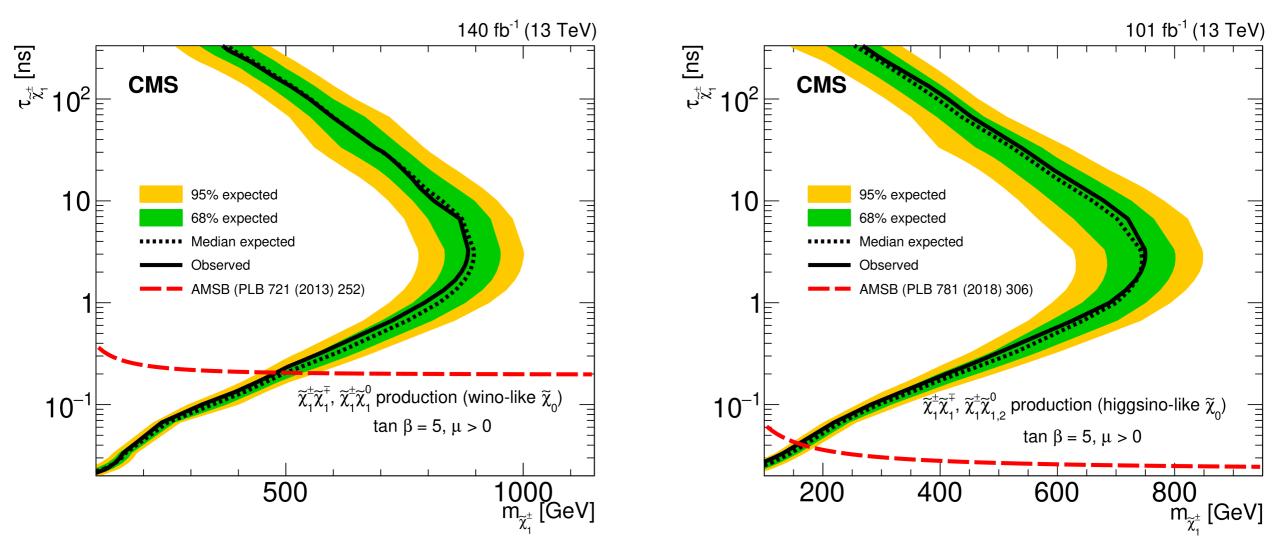
University

	Data taking poriod	10 -		$P_{\rm veto}$	
	Data-taking period	n_{lay}	Electrons	Muons	$ au_{ m h}$
	2017	4	$(8.2\pm 5.2) imes 10^{-4}$	$(0.0^{+3.9}_{-0.0}) imes 10^{-3}$	$(6.9^{+8.3}_{-5.1}) imes 10^{-2}$
		5	$(2.2 \pm 0.9) imes 10^{-4}$	$(3.2 \pm 1.3) imes 10^{-2}$	$(6.5^{+2.9}_{-2.7}) imes10^{-2}$
$P = \frac{N_{\text{T\&P}}^{\text{veto}} - N_{\text{SST\&P}}^{\text{veto}}}{N_{\text{SST\&P}}^{\text{veto}}}$		≥ 6	$(2.7 \pm 0.5) imes 10^{-5}$	$(1.2 \pm 0.5) imes 10^{-6}$	$(1.0 \pm 0.4) imes 10^{-3}$
$P_{\text{veto}} = \frac{1}{N_{\text{T&P}}} - \frac{1}{N_{\text{SST&P}}}$	2018 A	4	$(1.3 \pm 0.7) imes 10^{-3}$	$(1.0 \pm 1.0) imes 10^{-1}$	$(7.1^{+5.5}_{-3.8}) imes 10^{-2}$
$I_{\rm NT\&P} - I_{\rm SST\&P}$		5	$(0.9^{+1.5}_{-0.9}) imes10^{-4}$	$(7.4 \pm 4.2) imes 10^{-2}$	$(4.4^{+5.5}_{-4.4}) imes10^{-2}$
		≥ 6	$(1.6 \pm 0.6) imes 10^{-5}$	$(1.9\pm0.8) imes10^{-6}$	$(0.0^{+7.3}_{-0.0}) imes10^{-4}$
	2018 B	4	$(0.0^{+1.1}_{-0.0}) imes 10^{-4}$	$(4.0^{+15.0}_{-4.0}) imes10^{-2}$	$(5.6^{+6.5}_{-5.0}) imes10^{-2}$
		5	$(1.4\pm1.1)\times10^{-4}$	$(5.8 \pm 3.8) imes 10^{-2}$	$(5.1^{+4.5}_{-3.7}) imes10^{-2}$
		≥ 6	$(3.3 \pm 0.7) imes 10^{-5}$	$(1.5\pm 0.6) imes 10^{-6}$	$(2.3 \pm 1.0) imes 10^{-3}$
					9


Search Results

Data taking poriod	n _{lay}	E	Observatio		
Data-taking period		Leptons	Spurious tracks	Total	Observatio
2017	4	$1.4\pm0.9\pm0.2$	$10.9\pm0.7\pm4.7$	$12.2 \pm 1.1 \pm 4.7$	17
	5	$1.1\pm0.4\pm0.1$	$1.0\pm0.2\pm0.6$	$2.1\pm0.4\pm0.6$	4
	≥ 6	$6.7\pm1.1\pm0.7$	$0.04\pm0.04^{+0.08}_{-0.04}$	$6.7\pm1.1\pm0.7$	6
2018 A	4	$1.1^{+1.0}_{-0.6}\pm 0.1$	$6.2\pm0.5\pm3.5$	$7.3^{+1.1}_{-0.8}\pm3.5$	5
	5	$0.2^{+0.6}_{-0.2}\pm0.0$	$0.5\pm0.1\pm0.3$	$0.6^{+0.6}_{-0.2}\pm0.3$	0
	≥ 6	$1.8^{+0.6}_{-0.5}\pm0.2$	$0.04\pm0.04^{+0.06}_{-0.04}$	$1.8^{+0.6}_{-0.5}\pm 0.2$	2
2018 B	4	$0.0^{+0.8}_{-0.0}\pm 0.0$	$10.3\pm0.6\pm5.4$	$10.3^{+1.0}_{-0.6}\pm 5.4$	11
	5	$0.4^{+0.7}_{-0.3}\pm0.1$	$0.6\pm0.2\pm0.3$	$1.0^{+0.7}_{-0.3}\pm0.3$	2
	≥ 6	$5.7^{+1.2}_{-1.1}\pm0.6$	$0.00^{+0.04}_{-0.00}\pm 0.00$	$5.7^{+1.2}_{-1.1}\pm0.6$	1

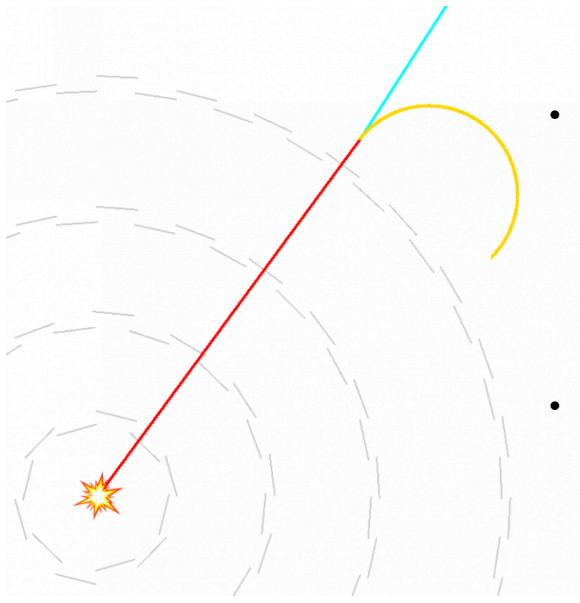
Searched 101/fb 13 TeV data recorded in 2017-8


- Observation of 48 events is consistent with a total background estimate of 47.8 +2.7 -2.3 (stat) \pm 8.1 (syst) events
- Results are combined with those from 2015-6 to provide upper limits for the full 140/fb of the Run 2 data set

UNIVERSITY

THE OHIO STATE Search for disappearing tracks at CMS — Pheno2020

Exclusions



- In the context of AMSB, these results exclude charginos below:
 - Wino-like neutralino case 884 (474) GeV for a lifetime of 3 (0.2) ns
 - Higgsino-like neutralino case 750 (175) GeV for a lifetime of 3 (0.05) ns
 - New interpretation for 2017-8 data

'he Ohio State

UNIVERSITY

Summary

- CMS has updated its disappearing track search
 - Full Run 2 data set
 - Making use of the Phase 1 pixel upgrade to extend sensitivity to lower particle lifetimes
 - Adding a new higgsino-like neutralino interpretation
- No excess observed over estimated backgrounds
 - Currently obtains the world-best limits at 95% CL over a wide range of particle masses and lifetimes

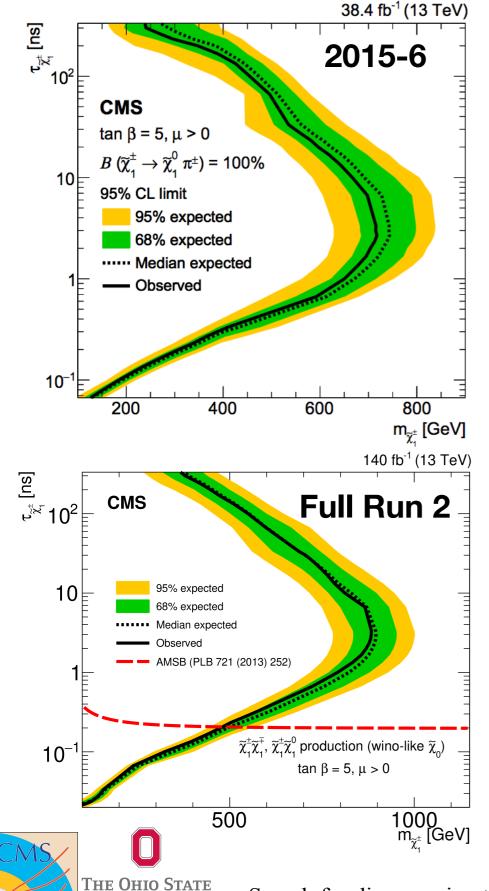
Newly submitted to PLB: <u>arXiv:2004.05153</u> (CMS public page) Featured: <u>cms.cern/news/disappearing-act-cms</u>

Search for disappearing tracks at CMS — Pheno2020

Background Systematics

- Spurious tracks:
 - Test assumption that track occurrence probability is independent of physics content by comparing Z->µµ to Z->ee estimates
 - Uncertainties in transfer factor (ζ) fit parameters
- Leptons:
 - Test assumption that unreconstructed leptons deposit no calorimeter energy by allowing them to instead deposit 10 GeV
 - Limited statistics in NLayers=4,5 muons/taus compare to electrons, which have sufficient events

	Background Spurious tracks Electrons Muons τ_h	Source	Uncertainty		
	Dackground	Jource	$n_{\rm lay} = 4$	$n_{\rm lay} = 5$	$n_{\rm lay} \ge 6$
_	Spurious tracks	Control sample	±19%	±29%	$\pm 116\%$
Averages across	-	ζ	$\pm 47\%$	$\pm 47\%$	$\pm 47\%$
data-taking period,	Electrons	Visible calorimeter energy	$\pm 14\%$	$\pm 14\%$	$\pm 13\%$
NLayers categories	Muons	$P_{\rm off}$	+7%	+7%	
		$P_{\rm trig}$	+8%	+2%	
	$ au_{ m h}$	Visible calorimeter energy	$\pm 19\%$	$\pm 19\%$	$\pm 19\%$
		$P_{\rm off}$	+7%	+7%	
		$P_{\rm trig}$	+8%	+2%	<u> </u>


Search for disappearing tracks at CMS — Pheno2020

Signal Systematics

	$E_{\rm calo}^{\Delta R < 0.5}$	Uncertainty			
		$n_{\rm lay} = 4$	$n_{\rm lay} = 5$	$n_{\rm lay} \ge 6$	
	Pileup	3.0%	3.3%	2.8%	
	ISR	13%	13%	13%	
	Trigger efficiency	1.1%	0.8%	0.4%	
	Jet energy scale	0.6%	0.7%	1.6%	
	Jet energy resolution	0.5%	0.5%	1.3%	
Averages across	$p_{\rm T}^{\rm miss}$	0.3%	0.3%	0.4%	
data-taking conditions	$E_{calo}^{\Delta R < 0.5}$	0.7%	0.7%	0.7%	
	Missing inner hits	2.3%	1.0%	0.3%	
	Missing middle hits	3.9%	5.1%	4.4%	
	Missing outer hits			0.2%	
	Reconstructed lepton veto efficiency	0.1%	0.1%		
	Track reconstruction efficiency	2.3%	2.3%	2.3%	
	Total	14%	15%	14%	

Previous Results in 2015-6 Data

UNIVERSITY

- Previously published results from proton collision data from 2015-6
 - JHEP 06 (2018) 022

Dup pariod	Estimated r	Observed events		
Run period	Leptons	Spurious tracks	Total	Observed events
2015	0.1 ± 0.1	$0^{+0.1}_{-0}$	0.1 ± 0.1	1
2016A	$2.0\pm0.4\pm0.1$	$0.4\pm0.2\pm0.4$	$2.4\pm0.5\pm0.4$	2
2016B	$3.1\pm0.6\pm0.2$	$0.9\pm0.4\pm0.9$	$4.0\pm0.7\pm0.9$	4
Total	$5.2\pm0.8\pm0.3$	$1.3\pm0.4\pm1.0$	$6.5\pm0.9\pm1.0$	7

brian.patrick.francis@cern.ch

16