

Jérémy Auffinger

IP2I & UCBL

In collaboration with A. Arbey and J. Silk

HEPHY, Vienna – October 29th, 2019

Introduction
000000000

Hawking radiation

PBHs constraints

Perspectives

Introduction

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Introduction	
000000000	

Hawking radiation

PBHs constraints

Perspectives

Introduction

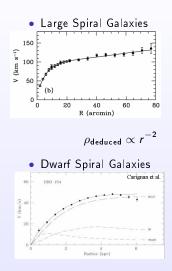
Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Primordial black holes


Hawking radiation

PBHs constraints

Perspectives

Dark matter and Galaxy Rotation Curves

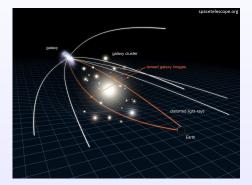
 \gg

$$p_{
m stars} \propto {
m e}^{-r/r_0}$$

Well known baryonic contribution Dark matter dominates those objects

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Gravitational lensing

Image taken by HST

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Bullet Cluster

Image reconstructed with HST & Chandra

Dark Matter is independent from baryonic matter!

Introduction
000000000

Hawking radiation

PBHs constraints

Perspectives

Cosmological Standard Model

Friedmann-Lemaître Universe

• Homogeneous and Isotropic Universe

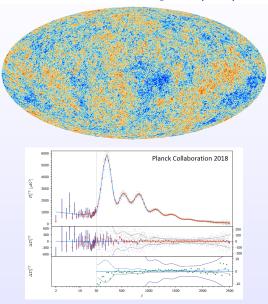
• Robertson-Walker metric:
$$d\tau^2 = dt^2 - a(t)^2 \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2(\theta) d\varphi^2 \right\}$$

a(t) scale factor

k space curvature (0: flat, 1: spheroid, -1: hyperboloid)

• Adiabatic cosmic fluids: matter, radiation, dark energy, ... (
ho,P)

• Einstein-Friedmann equations:
$$\begin{cases} H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \\ \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) \\ \text{Today (}H_0 \text{ Hubble-Lemaître constant): } H_0^2 = \frac{8\pi G}{3}\rho^0 - \frac{k}{a_0^2} \equiv \frac{8\pi G}{3}\rho_C^0 \leftarrow \text{critical density} \\ \text{Cosmological parameters (for each component): } \Omega_{comp} = \frac{\rho_{comp}^0}{\rho_C^0} \end{cases}$$


Primordial black holes

Hawking radiation

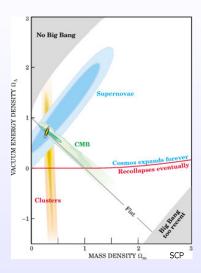
PBHs constraints

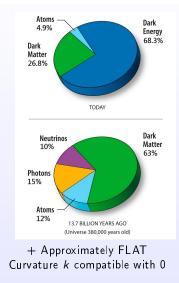
Perspectives

Cosmic Microwave Background (CMB)

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019


Primordial black holes


Hawking radiation

PBHs constraints

Perspectives

Cosmological Parameters

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Dark Matter Candidates

Massive neutrinos

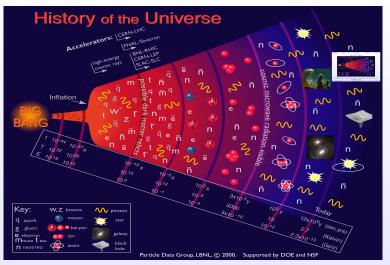
- Weakly Interacting Massive Particles (WIMPs) In particular, many particle physics models provide WIMP candidates!
- Other particles/fields: axions, dark fluids, ... Exotic and non-baryonic particles

Black Holes

Not possible with stellar and supermassive black holes

Modified Gravitation Laws

MOND, TeVeS, Scalar-tensor theories, ...


Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

History of the Universe

Recombination (and emission of the CMB) is the limit between the dark times and the observable Universe

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Introduction
00000000

Т

Primordial black holes

Hawking radiation

Perspectives

What happened during the dark times before recombination?

- How to describe the beginning of the Universe (\sim Planck energy)? Quantum gravity? Brane theories? Other gravitation theories?
- What did drive inflation in the early Universe? When did it end?
- Do/did **topological defects** (magnetic monopoles, cosmic strings, domain walls, ...) exist?
- What did happen during leptogenesis?
- What did happen during baryogenesis?
- Where does the particle-antiparticle asymmetry come from?
- Do we fully understand the properties of the QCD-dominated plasma?
- Do we fully understand **Big-Bang nucleosynthesis**?

What about (Primordial) Black Holes?

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Introduction

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Black holes

In the following we place ourselves in a natural unit system with $c = \hbar = k_B = G = 1$. Schwarzschild metric for a static compact object of mass M

$$d\tau^2 = \left(1 - \frac{2M}{r}\right)dt^2 - \frac{dr^2}{1 - \frac{2M}{r}} - r^2(d\theta^2 + \sin^2(\theta) d\phi^2)$$

One defines the Schwarzschild radius: $R_s = 2M$.

If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon. \longrightarrow Black Hole!

Kerr metric for a static compact object of mass *M* and angular momentum *J*

$$d\tau^{2} = (dt - a\sin^{2}(\theta)d\phi)^{2} \frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-((r^{2} + a^{2})d\phi - adt)^{2} \frac{\sin^{2}(\theta)}{\Sigma}$$

a = J/M, $\Sigma = r^2 + a^2 \cos^2(\theta)$, $\Delta = r^2 - R_s r + a^2$, $R_s = 2M$

The horizon exists but is deformed and flattened \rightarrow Kerr (rotating) Black Hole!

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Black holes

In the following we place ourselves in a natural unit system with $c = \hbar = k_B = G = 1$. Schwarzschild metric for a static compact object of mass M

$$d\tau^2 = \left(1 - \frac{2M}{r}\right)dt^2 - \frac{dr^2}{1 - \frac{2M}{r}} - r^2(d\theta^2 + \sin^2(\theta) d\phi^2)$$

One defines the Schwarzschild radius: $R_s = 2M$.

If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon. \longrightarrow Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

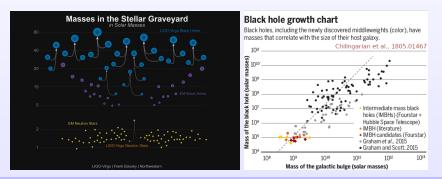
$$d\tau^{2} = \left(dt - a\sin^{2}(\theta)d\phi\right)^{2}\frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-\left(\left(r^{2} + a^{2}\right)d\phi - adt\right)^{2}\frac{\sin^{2}(\theta)}{\Sigma}$$

$$a = J/M, \ \Sigma = r^2 + a^2 \cos^2(heta), \ \Delta = r^2 - R_s r + a^2, \ R_s = 2M$$

The horizon exists but is deformed and flattened —> Kerr (rotating) Black Hole!

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Observed black holes

Three types of black holes have been discovered

- Stellar black holes BHs originated in the explosion of massive stars/supernovae, $\sim 3-100~M_{\odot}$
- Intermediate mass black holes (IMBH) New class of recently discovered BHs, $\sim 10^3 - 10^6 \, M_{\odot}$
- supermassive black holes (SMBH) BHs at the center of galaxies, $\sim 10^6 - 10^9 \, M_{\odot}$

Origin of primordial black holes

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of topological defects (cosmic strings, domain walls)

Mass predictions

PBHs form when a density fluctuation enters the Hubble horizon, so

$$M_{
m PBH} \sim M_{
m Planck} imes rac{t_0}{t_{
m Planck}} \sim 10^{38}\,{
m g}\, imes \left(rac{t_0}{1\,{
m s}}
ight)$$

where t_0 is the creation time.

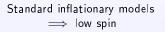
We get:

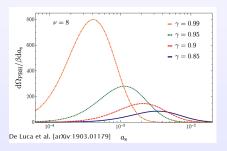
- $M \sim 10^{-5}\,{
 m g}$ for $t_0 \sim 10^{-43}\,{
 m s}
 ightarrow {
 m Planck}$ black holes
- $M\sim 10^{15}\,{
 m g}$ for $t_0\sim 10^{-23}\,{
 m s}
 ightarrow$ lightest black holes still (possibly) existing
- $M \sim 10^5 M_{\odot}$ for $t_0 \sim 1 \, \text{s} \rightarrow \text{IMHB}$? seeds for SMBH?

Primordial black holes

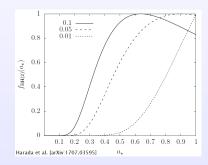
Hawking radiation

PBHs constraints


Perspectives

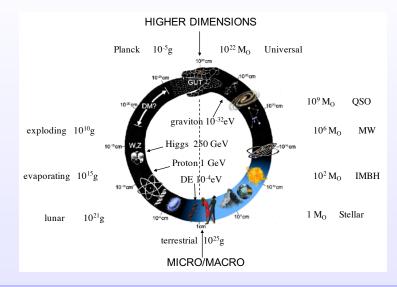

Angular momentum of primordial Black Holes

Angular momentum given by the dimensionless parameter $a^*\equiv J/M^2$


 $a^* \in [0,1]$ $a^* = 0$ for Schwarzschild BHs, $a^* = 1$ for extremal Kerr BHs

Spin predictions

$\begin{array}{rl} \mbox{Transient matter domination} \\ \implies \mbox{ high spin} \end{array}$


Primordial black holes 0000●0 Hawking radiation

PBHs constraints

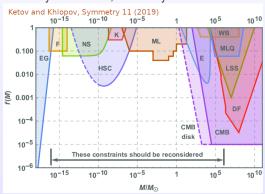
Perspectives

The Cosmic Uroboros

A cosmic vision of PBHs by B. Carr (from arXiv:1703.08655)

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Primordial Black Holes

Plausible Dark Matter candidates

- no need for Standard Model or General Relativity extension
- dynamically cold
- no need to prove BH existence
- constrained, but mass ranges still available for BHs to represent all of dark matter

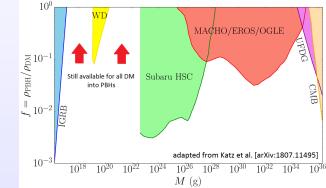
Many constraints, but many are not robust!

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Hawking radiation

PBHs constraints


Perspectives

Primordial Black Holes

Plausible Dark Matter candidates

- no need for Standard Model or General Relativity extension
- dynamically cold
- no need to prove BH existence
- constrained, but mass ranges still available for BHs to represent all of dark matter

More realistically: constraints from radiation, lensing and dynamics observations

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Introduction
000000000

Hawking radiation

PBHs constraints

Perspectives

Introduction

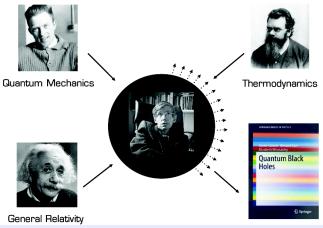
Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Primordial black holes


Hawking radiation

PBHs constraints

Perspectives

Why are PBHs so special?

Light PBHs cannot be described only with General Relativity...

from B. Carr

... because they emit Hawking radiation!

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Black hole Hawking radiation

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^* :

$$Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d}t \mathrm{d}E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E'/T(M, a^*)} \pm 1}$$

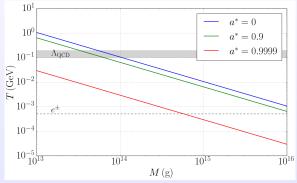
 Γ_i is the greybody factor (\sim absorption coefficient in Planck's black-body law, corrected by the gravitational potential well)

- E' is the energy corrected for horizon rotation
- \pm stand for fermions/bosons

Primordial black holes

Hawking radiation

PBHs constraints


Perspectives

Hawking temperature

Hawking temperature for Kerr BHs

$$T(M, a^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (a^*)^2}}{1 + \sqrt{1 - (a^*)^2}} \right) \stackrel{\text{Schwarzschild}}{\stackrel{a^*}{\longrightarrow} 0} \frac{1}{8\pi M}$$
$$\underset{a^* = 1}{\overset{\text{Kerr extremal}}{\xrightarrow} 0} 0$$

Comparison with the e^\pm rest mass and QCD scale $\Lambda_{\rm QCD}$

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

What does Hawking radiation tells us

Different scales, different times...

- $M \sim 10^{-5}~{
 m g}
 ightarrow {
 m Planck}$ mass PBHs ightarrow probes of quantum gravity
- $M \sim 10^{13} \, {
 m g}
 ightarrow {
 m QCD}{
 m -scale} \, {
 m PBHs}
 ightarrow {
 m BBN}$ perturbation
- + $M \sim 10^{15}\,{
 m g}
 ightarrow {
 m PBHs}$ emitting a lot of particles today ightarrow cosmic rays

.....evaporation limit

• $M\gg 10^{15}~{
m g}
ightarrow {
m PBHs}$ with low Hawking emission ightarrow lensing, mergers, GWs

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Kerr Hawking radiation equations

Kerr metric

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin^{2}(\theta)}{\Sigma^{2}}dt\,d\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}$$
$$-\Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin^{2}(\theta)}{\Sigma^{2}}\right)\sin^{2}(\theta)d\phi^{2}$$

$$\Sigma \equiv r^2 + (a^*)^2 M^2 \cos^2(heta)$$
 and $\Delta \equiv r^2 - 2Mr + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 $\mu = \text{rest mass}$

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Kerr Hawking radiation equations

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{K^{2}+2is(r-M)K}{\Delta} - 4isEr - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

R radial component of ψ , ϕ $K \equiv (r^2 + a^2)E + am$, s = spin, I = angular momentum and m = projection of I λ_{slm} eigenvalue of the angular equation

Transformation into a Schrödinger wave equation

Change $R \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington-Finkelstein coordinate system) (Chandrasekhar & Detweiler 1970s)

$$\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0$$

Solved with purely outgoing solution at horizon $Z \xrightarrow[r^* \to -\infty]{} e^{-i Er^*}$ Transmission coefficient $\Gamma \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2 \rightarrow$ greybody factor

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Advertisement: BlackHawk

First public C code computing Hawking radiation:

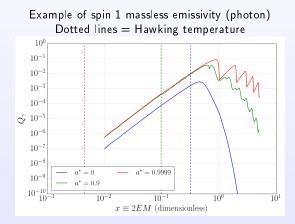
- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles + graviton
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass (and spin) functions
- time evolution of the PBHs

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693

HomeDescriptionManual	BlackHawk By Alexandre Arbey and Jérémy Auffinger
Download Contact	Calculation of the Hawking evaporation spectra of any black hole distribution
	BlackHawk is a public C program for calculating the Hawking evaporation spectra of any black hole distribution. This program enables the users to compute the primary and secondary spectra of stable or long-lived particles generated by Hawking radiation of the distribution of black holes, and to study their evolution in time.
	If you use BlackHawk to publish a paper, please cite: A. Arbey and J. Auffinger, arXiv:1905.04268 [gr-qc]
	For any comment, question or bug report please contact us.

Primordial black holes


Hawking radiation

PBHs constraints

Perspectives

Enhanced emission for rotating BHs

BH-particle spin coupling \Rightarrow superradiance effects (see e.g. Chandrasekhar & Detweiler papers in the 1970s) The Hawking radiation is enhanced for particles of spin 1 or 2.

Introduction
000000000

Hawking radiation

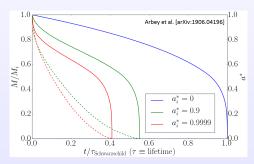
PBHs constraints

Perspectives

Black hole lifetime

Evolution equations

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}$$


$$\begin{split} f &\sim \int_{E} \text{energy} \times \text{emission} \\ g &\sim \int_{E} \text{angular momentum} \times \text{emission} \end{split}$$

BH mass (solid) and spin (dotted) evolution

Schwarzschild BH lifetime:

 $\tau_{
m S} \propto M^3$

- $M \sim M_{
 m Planck} \implies au_{
 m S} \sim t_{
 m Planck}$
- $M \sim 10^{15} \,\mathrm{g} \implies \tau_{\mathrm{S}} \sim t_0$
- $M \sim M_\odot \implies au_{
 m S} \sim 10^{66} \, {
 m y}$

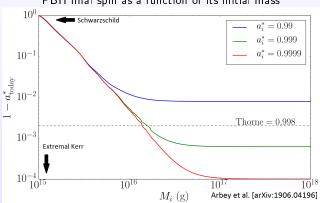
mass normalized to initial mass M_i

Jérémy Auffinger

HEPHY, Vienna - October 29th, 2019

Introduction
000000000

Hawking radiation 000000000


PBHs constraints

Perspectives

Extremal spin today?

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating BHs from disk accretion ($a^* < 0.998$) or mergers?

 \rightarrow Yes, with sufficiently massive and extremal PBHs

PBH final spin as a function of its initial mass

Introduction
000000000

Hawking radiation

PBHs constraints

Perspectives

Introduction

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Constraints on PBHs...

... from Hawking radiation

- BBN perturbation through hadronic injection + photo-dissociation
- CMB distorsion through energy/entropy injection
- cosmic rays (photons, electrons, antiparticles)
- gravitational waves?
- •

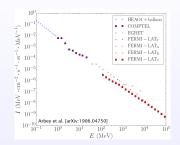
... from other effects

- gravitational lensing
- galaxy dynamics (cusp/core problem)
- gravitational wave merger events
- white dwarfs/neutron star disruption

• • • •

... and combined constraints from PBHs+WIMPs models!

tion	Primordial black holes	Hawking radiation	PBHs constraints	1
0000	000000	000000000	000000	(


Isotropic gamma ray background (IGRB) constraints

Origin

Introducti

Diffuse background +

- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?

Flux estimation for BHs

$$egin{split} & I_{
m BHs} pprox & rac{1}{4\pi} E \int_{t_{
m CMB}}^{t_{
m today}} (1+z(t)) \ & imes \int_{M} \left[rac{{
m d}n}{{
m d}M} rac{{
m d}^2 N}{{
m d}t {
m d}E} (M,(1+z(t))E) \, {
m d}M
ight] {
m d}t \, {
m d}t \end{split}$$

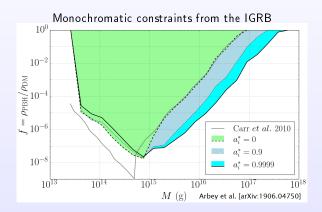
Comparison with $I_{\rm mes.}
ightarrow$ constraints on PBHs mass function ${
m d}n/{
m d}M$.

Jérémy Auffinger

Perspectives

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

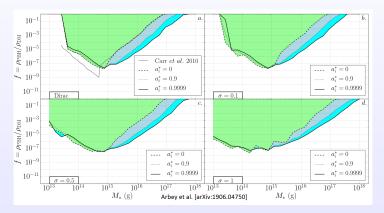
IGRB and Kerr PBHs: monochromatic mass distributions

Main spin effects

- enhanced luminosity ⇒ stronger constraints
- reduced temperature \Rightarrow reduced emission energy \Rightarrow weaker constraints

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

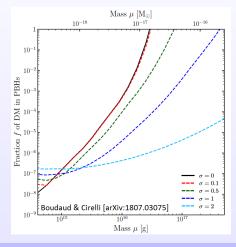
IGRB and Kerr PBHs: Extension to broad mass functions

Main width effects

- broadening of the spectrum \Rightarrow stronger constraint
- broadening of the mass distribution \Rightarrow greater DM total density \Rightarrow weaker constraint

results for log-normal mass distribution $M \mathrm{d}n/\mathrm{d}M \propto \exp(-\ln(M/M_*)^2/2\sigma^2)$

Primordial black holes


Hawking radiation

PBHs constraints

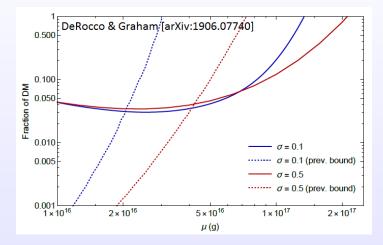
Perspectives

e^\pm based measures: local measurement

- PBHs of mass $M \lesssim 10^{17}\,{
 m g}$ emit e^\pm
- e^\pm propagate in the galactic electromagnetic field
- ullet terrestrial experiments measure the solar-modulated e^\pm flux
- Voyager 1 measures the unmodulated e^\pm flux

Jérémy Auffinger

Primordial black holes


Hawking radiation

PBHs constraints

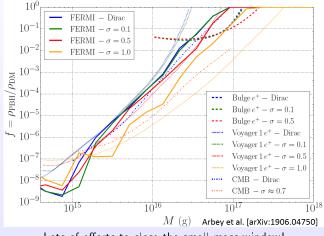
Perspectives

e^{\pm} based measures: the 511 keV line

- PBHs of mass $M \lesssim 10^{17}~{
 m g}$ emit e^\pm
- e^{\pm} annihilate locally/in DM-dense regions (Milky Way bulge)...
- ...emitting a 511 keV signal measured by telescopes

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Comparison with recent constraints in the same mass range

General philosophy:

- monochromatic \rightarrow extended (realistic) mass functions
- Schwarzschild \rightarrow general PBHs (rotating, charged, ...)

Lots of efforts to close the small-mass window!

Jérémy Auffinger

Introduction	Primordial black holes
000000000	000000

Hawking radiation

PBHs constraints

Perspectives

Introduction

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives •0000

Ongoing work: Gravitational waves from Hawking radiation

PBHs emits gravitons, which can be interpreted as gravitational waves. Will the future GW experiments be able to see them in the stochastic background?

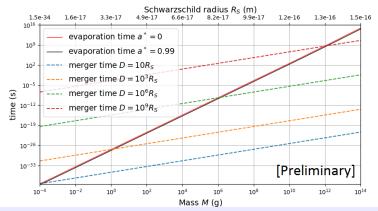
 \rightarrow Discovering gravitational waves emitted via Hawking radiation would validate the existence of the graviton

 \rightarrow Unique probe of the inflation parameters

Jérémy Auffinger

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Ongoing work: Primordial black holes: possibility of merger (1)

Is lifetime of PBHs smaller than merger duration?

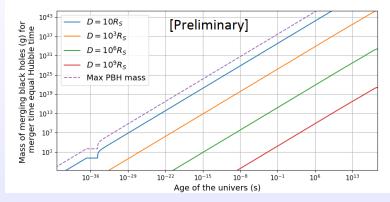
Preliminary work by A. Arbey & J.-F. Coupechoux

Plain lines: PBH evaporation time (=lifetime) Dashed lines: merger time for two PBHs of same mass, for different initial distances D

Jérémy Auffinger

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

Ongoing work: Primordial black holes: possibility of merger (2)

Is expansion too fast to allow for a merger?

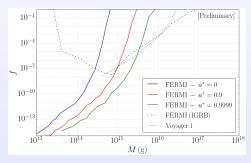
Preliminary work by A. Arbey & J.-F. Coupechoux

For a given distance *D*, two BHs with masses above the lines merge faster than they move away because of expansion.

Jérémy Auffinger

Primordial black holes

Hawking radiation


PBHs constraints

Perspectives

PBH-related projects

- Big Bang Nucleosynthesis (see e.g. Sedel'nikov 1996, Kohri 2000)
- galactic gamma & X-rays (see e.g. Ballestros *et al.* [arXiv:1906.10113])
- galactic positrons and antiprotons (see e.g. Boudaud & Cirelli [arXiv:1807.03075], DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])
- stability of extremal BHs

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT

Primordial black holes

Hawking radiation

PBHs constraints

Perspectives

Conclusions

Take-home messages

- Primordial black holes are good candidates for DM
- A broad range of masses is still possible
- Light PBHs are quantum objects
- PBHs of $\sim 10^{15}\,\text{g}$ may still be present and emit a lot of Hawking radiation

Perspectives

- Closing the remaining PBH mass windows for all DM into PBHs?
- Primordial BH / Astrophysical BH discrimination using GW events (mass/spin)?
- Graviton/gravitational wave duality tests?

References

- BlackHawk: http://blackhawk.hepforge.org [A. Arbey, J. Auffinger, 1905.04268]
- Any extremal black holes are primordial [A. Arbey, J. Auffinger, J. Silk, 1906.04196]
- Constraining primordial black hole masses with the isotropic gamma ray background [A. Arbey, J. Auffinger, J. Silk, 1906.04750]

Backup

Backup

Kerr Hawking radiation equations

Field equations + Kerr metric

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)
 $d\tau^2 = (dt - a\sin^2\theta d\phi)^2 \frac{\Delta}{\Sigma} - \left(\frac{dr^2}{\Delta} + d\theta^2\right)\Sigma$
 $- ((r^2 + a^2)d\phi - adt)^2 \frac{\sin^2\theta}{\Sigma}$

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{K^{2}+2is(r-M)K}{\Delta} - 4isEr - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

Change of variables

ć

 $R \rightarrow Z$ and $r \rightarrow r^*$ defined by

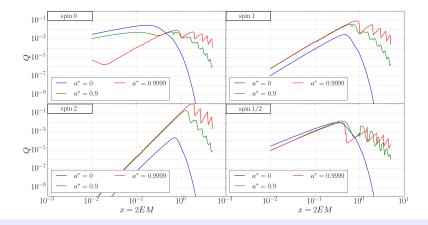
$$\frac{\mathrm{d}r^*}{\mathrm{d}r} = \frac{\rho^2}{\Delta} \implies r^*(r) = r + \frac{r_{\mathrm{H}}r_{+} + am/E}{r_{+} - r_{-}} \ln\left(\frac{r}{r_{+}} - 1\right) - \frac{r_{\mathrm{H}}r_{-} + am/E}{r_{+} - r_{-}} \ln\left(\frac{r}{r_{-}} - 1\right)$$

Schrödinger-like wave equation

$$\frac{d^2 Z}{dr^{*2}} + (E^2 - V(r^*))Z = 0$$

$$V(r^*) \text{ spin-dependant Chandrasekhar-Detweiler}$$
potentials (1970's)

Kerr Hawking radiation equations


Chandrasekhar-Detweiler potentials

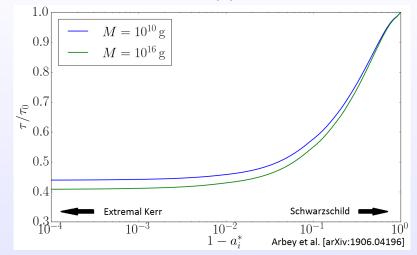
$$\begin{split} V_{0}(r) &= \frac{\Delta}{\rho^{4}} \left(\lambda_{0 \ im} + \frac{\Delta + 2r(r-M)}{\rho^{2}} - \frac{3r^{2}\Delta}{\rho^{4}} \right) \\ V_{1/2,\pm}(r) &= (\lambda_{1/2 \ im} + 1) \frac{\Delta}{\rho^{4}} \mp \frac{\sqrt{(\lambda_{1/2,l,m} + 1)\Delta}}{\rho^{4}} \left((r-M) - \frac{2r\Delta}{\rho^{2}} \right) \\ V_{1,\pm}(r) &= \frac{\Delta}{\rho^{4}} \left((\lambda_{1 \ im} + 2) - \alpha^{2} \frac{\Delta}{\rho^{4}} \mp i\alpha\rho^{2} \frac{d}{dr} \left(\frac{\Delta}{\rho^{4}} \right) \right) \\ V_{2}(r) &= \frac{\Delta}{\rho^{8}} \left(q - \frac{\rho^{2}}{(q-\beta\Delta)^{2}} \left((q-\beta\Delta) \left(\rho^{2}\Delta q^{\prime\prime} - 2\rho^{2}q - 2r(q^{\prime}\Delta - q\Delta^{\prime}) \right) \right) \\ &+ \rho^{2} (\kappa\rho^{2} - q^{\prime} + \beta\Delta^{\prime})(q^{\prime}\Delta - q\Delta^{\prime}) \right) \end{split}$$

 $\rho^{2} \equiv r^{2} + \alpha^{2} \text{ and } \alpha^{2} \equiv a^{2} + am/E$ $q(r) = \nu\rho^{4} + 3\rho^{2}(r^{2} - a^{2}) - 3r^{2}\Delta$ $q'(r) = r\left((4\nu + 6)\rho^{2} - 6(r^{2} - 3Mr + 2a^{2})\right)$ $q''(r) = (4\nu + 6)\rho^{2} + 8\nu r^{2} - 6r^{2} + 36Mr - 12a^{2}$ $\beta_{\pm} = \pm 3\alpha^{2}$ $\kappa_{\pm} = \pm \sqrt{36M^{2} - 2\nu(\alpha^{2}(5\nu + 6) - 12a^{2}) + 2\beta\nu(\nu + 2)}$

Jérémy Auffinger

Luminosities for all spins

Page parameters (Page 1976)

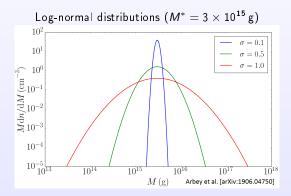

$$f(M, a^*) \equiv -M^2 \frac{\mathrm{d}M}{\mathrm{d}t} = M^2 \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{E}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$
$$g(M, a^*) \equiv -\frac{M}{a^*} \frac{\mathrm{d}J}{\mathrm{d}t} = \frac{M}{a^*} \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{m}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$

Evolution equations (Page 1976)

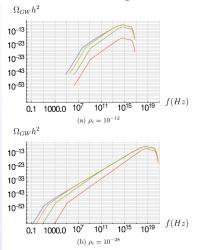
$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}$$

Jérémy Auffinger

Decrease of BH lifetime au for increasing initial spin a_i^* , compared to the Schwarzschild case (au_0)



Log-normal distribution


Definition

$$\frac{\mathrm{d}n}{\mathrm{d}M} = \frac{A}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{\left(\ln(M/M_*)\right)^2}{2\sigma^2}\right)$$

 $M^* = \text{central mass}, \sigma = \text{width (dimensionless)}$

GW background from PBH graviton emission

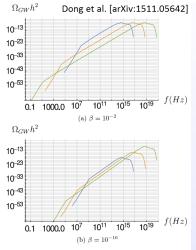
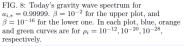



FIG. 7: Today's gravity wave spectrum, for $a_{*,i} = 0.99999$. $\rho_i = 10^{-12}$ for the upper plot, and $\rho_i = 10^{-28}$ for the lower one. In each plot, four curves from top to bottom, are for $\beta = 10^{-2}$, 10^{-4} , 10^{-8} , 10^{-16} , respectively.

