

Primordial Black Holes

Jérémy Auffinger

IP2I & UCBL

In collaboration with A. Arbey and J. Silk

HEPHY, Vienna - October 29th, 2019

[Introduction](#page-2-0)

[Primordial black holes](#page-12-0)

[Hawking radiation](#page-21-0)

[PBHs constraints](#page-32-0)

[Perspectives](#page-40-0)

Dark matter and Galaxy Rotation Curves

$$
^{-2} \qquad \qquad \gg \qquad \qquad \rho_{\rm stars} \propto {\rm e}^{-r/r_0}
$$

Well known baryonic contribution Dark matter dominates those objects

Gravitational lensing

Image taken by HST

Bullet Cluster

Image reconstructed with HST & Chandra

Dark Matter is independent from baryonic matter!

Cosmological Standard Model

Friedmann-Lemaître Universe

• Homogeneous and Isotropic Universe

• Robertson-Walker metric:
$$
d\tau^2 = dt^2 - a(t)^2 \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2(\theta) d\varphi^2 \right\}
$$

 $a(t)$ scale factor

 k space curvature $(0, \text{flat}, 1, \text{suberoid}, -1, \text{hyperboloid})$

• Adiabatic cosmic fluids: matter, radiation, dark energy, (ρ, P)

• Einstein-Friedmann equations:
$$
\begin{cases} H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho - \frac{k}{a^2} \\ \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3P) \end{cases}
$$

Today $(H_0 \text{ Hubble-Lemaître constant}): H_0^2 = \frac{8\pi G}{3} \rho^0 - \frac{k}{a_0^2} \equiv \frac{8\pi G}{3} \rho^0_C \leftarrow \text{ critical density}$
Cosmological parameters (for each component): $\Omega_{comp} = \frac{\rho_{comp}^0}{\rho_C^0}$

Cosmic Microwave Background (CMB)

Jérémy Auffinger 1988 (1999) 1999 HEPHY, Vienna – October 29th, 2019 1999 1999 The Contract of the Contract of T

Cosmological Parameters

Dark Matter Candidates

- Massive neutrinos
- Weakly Interacting Massive Particles (WIMPs) In particular, many particle physics models provide WIMP candidates!
- \bullet Other particles/fields: axions, dark fluids, ... Exotic and non-baryonic particles

• Black Holes

Not possible with stellar and supermassive black holes

• Modied Gravitation Laws

MOND, TeVeS, Scalar-tensor theories, ...

History of the Universe

Recombination (and emission of the CMB) is the limit between the dark times and the observable Universe

Jérémy Auffinger 10 (1998) 10 (1999) HEPHY, Vienna – October 29th, 2019 10 (1999) 10 (1999) 10 (1999) 10 (1999)

T

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[Introduction](#page-2-0) [Primordial black holes](#page-12-0) [Hawking radiation](#page-21-0) [PBHs constraints](#page-32-0) [Perspectives](#page-40-0)

What happened during the dark times before recombination?

- How to describe the beginning of the Universe (\sim Planck energy)? Quantum gravity? Brane theories? Other gravitation theories?
- What did drive inflation in the early Universe? When did it end?
- Do/did topological defects (magnetic monopoles, cosmic strings, domain walls, ...) exist?
- What did happen during leptogenesis?
- What did happen during baryogenesis?
- Where does the particle-antiparticle asymmetry come from?
- Do we fully understand the properties of the QCD-dominated plasma?
- Do we fully understand Big-Bang nucleosynthesis?

What about (Primordial) Black Holes?

[Introduction](#page-2-0)

[Primordial black holes](#page-12-0)

[Hawking radiation](#page-21-0)

[PBHs constraints](#page-32-0)

[Perspectives](#page-40-0)

Black holes

In the following we place ourselves in a natural unit system with $c = \hbar = k_B = G = 1$. Schwarzschild metric for a static compact object of mass M

$$
d\tau^2 = \left(1 - \frac{2M}{r}\right)dt^2 - \frac{dr^2}{1 - \frac{2M}{r}} - r^2(d\theta^2 + \sin^2(\theta)\,d\phi^2)
$$

One defines the Schwarzschild radius: $R_s = 2M$.

If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon. −→ Black Hole!

$$
d\tau^2 = (dt - a\sin^2(\theta)d\phi)^2 \frac{\Delta}{\Sigma} - \left(\frac{dr^2}{\Delta} + d\theta^2\right)\Sigma
$$

$$
- \left((r^2 + a^2)d\phi - adt\right)^2 \frac{\sin^2(\theta)}{\Sigma}
$$

Black holes

In the following we place ourselves in a natural unit system with $c = \hbar = k_B = G = 1$. Schwarzschild metric for a static compact object of mass M

$$
d\tau^2 = \left(1 - \frac{2M}{r}\right)dt^2 - \frac{dr^2}{1 - \frac{2M}{r}} - r^2(d\theta^2 + \sin^2(\theta)\,d\phi^2)
$$

One defines the Schwarzschild radius: $R_s = 2M$.

If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon. −→ Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

$$
d\tau^2 = (dt - a\sin^2(\theta)d\phi)^2 \frac{\Delta}{\Sigma} - \left(\frac{dr^2}{\Delta} + d\theta^2\right)\Sigma
$$

$$
- \left((r^2 + a^2)d\phi - adt\right)^2 \frac{\sin^2(\theta)}{\Sigma}
$$

 $a = J/M$, $\Sigma = r^2 + a^2 \cos^2(\theta)$, $\Delta = r^2 - R_s r + a^2$, $R_s = 2M$

The horizon exists but is deformed and flattened→ Kerr (rotating) Black Hole!

Observed black holes

Three types of black holes have been discovered

- Stellar black holes BHs originated in the explosion of massive stars/supernovae, \sim 3 $-$ 100 M_{\odot}
- Intermediate mass black holes (IMBH) New class of recently discovered BHs, $\sim 10^3 - 10^6$ Mo
- supermassive black holes (SMBH) BHs at the center of galaxies, $\sim 10^6 - 10^9$ M_{\odot}

Origin of primordial black holes

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of topological defects (cosmic strings, domain walls)

Mass predictions

PBHs form when a density fluctuation enters the Hubble horizon, so

$$
\textit{M}_{\rm PBH} \sim \textit{M}_{\rm Planck} \times \frac{t_0}{t_{\rm Planck}} \sim 10^{38} \, \text{g} \, \times \Bigl(\frac{t_0}{1 \, \text{s}}\Bigr)
$$

where t_0 is the creation time.

We get:

- $M \sim 10^{-5}$ g for $t_0 \sim 10^{-43}$ s \rightarrow Planck black holes
- $M \sim 10^{15}$ g for $t_0 \sim 10^{-23}$ s \rightarrow lightest black holes still (possibly) existing
- $M \sim 10^5 M_{\odot}$ for $t_0 \sim 1$ s \rightarrow IMHB? seeds for SMBH?

Angular momentum of primordial Black Holes

Angular momentum given by the dimensionless parameter $\mathsf{a}^* \equiv \mathsf{J}/\mathsf{M}^2$

 $a^* \in [0,1]$

 $a^* = 0$ for Schwarzschild BHs, $a^* = 1$ for extremal Kerr BHs

Spin predictions

The Cosmic Uroboros

A cosmic vision of PBHs by B. Carr (from arXiv:1703.08655)

Primordial Black Holes

Plausible Dark Matter candidates

- no need for Standard Model or General Relativity extension
- dynamically cold
- no need to prove BH existence
- constrained, but mass ranges still available for BHs to represent all of dark matter

Many constraints, but many are not robust!

Jérémy Auffinger 18 / 18 / 43 / HEPHY, Vienna – October 29th, 2019 18 / 18 / 43 / 43 / 43 / 43 / 43 / 43 / 43 /

Primordial Black Holes

Plausible Dark Matter candidates

- no need for Standard Model or General Relativity extension
- dynamically cold
- no need to prove BH existence
- constrained, but mass ranges still available for BHs to represent all of dark matter

More realistically: constraints from radiation, lensing and dynamics observations

[Introduction](#page-2-0)

[Primordial black holes](#page-12-0)

[Hawking radiation](#page-21-0)

[PBHs constraints](#page-32-0)

[Perspectives](#page-40-0)

Why are PBHs so special?

Light PBHs cannot be described only with General Relativity...

from B. Carr

... because they emit Hawking radiation!

Black hole Hawking radiation

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^{*}

$$
Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d} t \mathrm{d} E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E'/T(M, a^*)} \pm 1}
$$

 Γ_i is the greybody factor (\sim absorption coefficient in Planck's black-body law, corrected by the gravitational potential well) E' is the energy corrected for horizon rotation

 \pm stand for fermions/bosons

Hawking temperature

Hawking temperature for Kerr BHs

$$
T(M, a^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (a^*)^2}}{1 + \sqrt{1 - (a^*)^2}} \right) \overset{\text{Schwarzschild}}{=} \frac{1}{a^* = 0} \frac{1}{8\pi M}
$$

$$
\overset{\text{Kerr extpemal}}{=} 0
$$

Comparison with the e^\pm rest mass and QCD scale $\Lambda_{\rm QCD}$

What does Hawking radiation tells us

Different scales, different times...

- $\bullet \;\; M \sim 10^{-5} \text{ g} \to \textsf{Planck}$ mass <code>PBHs</code> \to <code>probes</code> of <code>quantum</code> gravity
- $M \sim 10^{13}$ g \rightarrow QCD-scale PBHs \rightarrow BBN perturbation
- $M \sim 10^{15}$ g \rightarrow PBHs emitting a lot of particles today \rightarrow cosmic rays

. evaporation limit

• $M \gg 10^{15}$ g \rightarrow PBHs with low Hawking emission \rightarrow lensing, mergers, GWs

Kerr Hawking radiation equations

Kerr metric

$$
ds2 = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin^{2}(\theta)}{\Sigma^{2}}dt d\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}
$$

$$
-\Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin^{2}(\theta)}{\Sigma^{2}}\right)\sin^{2}(\theta)d\phi^{2}
$$

$$
\Sigma \equiv r^2 + (a^*)^2 M^2 \cos^2(\theta)
$$
 and $\Delta \equiv r^2 - 2Mr + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$
(i\partial - \mu)\psi = 0
$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 μ = rest mass

Kerr Hawking radiation equations

Teukolsky radial equation

$$
\frac{1}{\Delta^s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR}{dr} \right) + \left(\frac{K^2 + 2i s (r - M) K}{\Delta} - 4i sEr - \lambda_{slm} - \mu^2 r^2 \right) R = 0
$$

R radial component of ψ , ϕ $K \equiv (r^2 + a^2)E + am$, $s =$ spin, $l =$ angular momentum and $m =$ projection of l λ_{slm} eigenvalue of the angular equation

Transformation into a Schrödinger wave equation

Change $R \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington-Finkelstein coordinate system) (Chandrasekhar & Detweiler 1970s)

$$
\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0
$$

Solved with purely outgoing solution at horizon $Z \underset{r^* \to -\infty}{\longrightarrow} e^{-i\,Et^*}$ Transmission coefficient $\Gamma \equiv |Z_{\rm out}^{+\infty}/Z_{\rm out}^{\rm horizon}|^2 \to$ greybody factor

Advertisement: BlackHawk

First public C code computing Hawking radiation:

- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles + graviton
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass (and spin) functions
- time evolution of the PBHs

Download: <http://blackhawk.hepforge.org>

Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693

Enhanced emission for rotating BHs

BH-particle spin coupling \Rightarrow superradiance effects (see e.g. Chandrasekhar & Detweiler papers in the 1970s)

The Hawking radiation is enhanced for particles of spin 1 or 2.

Black hole lifetime

Evolution equations

$$
\frac{dM}{dt} = -\frac{f(M, a^*)}{M^2}
$$

$$
\frac{da^*}{dt} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}
$$

$$
f \sim \int_{E} \text{energy} \times \text{emission}
$$

$$
g \sim \int_{E} \text{angular momentum} \times \text{emission}
$$

BH mass (solid) and spin (dotted) evolution

Schwarzschild BH lifetime:

 $\tau_{\text{S}} \propto M^3$

- $M \sim M_{\text{Planck}} \implies \tau_{\text{S}} \sim t_{\text{Planck}}$
- $M \sim 10^{15}$ g $\implies \tau_{\rm S} \sim t_0$
- $M \sim M_{\odot} \implies \tau_{\rm S} \sim 10^{66} \,\rm yr$

mass normalized to initial mass M_i

Jérémy Auffinger 1987 (1998) 28 / HEPHY, Vienna – October 29th, 2019 28 / 28 / 43

Extremal spin today?

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating BHs from disk accretion $(a^* < 0.998)$ or mergers?

 \rightarrow Yes, with sufficiently massive and extremal PBHs

[Perspectives](#page-40-0)

Constraints on PBHs...

... from Hawking radiation

- BBN perturbation through hadronic injection + photo-dissociation
- CMB distorsion through energy/entropy injection
- cosmic rays (photons, electrons, antiparticles)
- gravitational waves?
- \bullet . . .

 \bullet

... from other effects

- gravitational lensing
- galaxy dynamics (cusp/core problem)
- gravitational wave merger events
- white dwarfs/neutron star disruption

... and combined constraints from PBHs+WIMPs models!

Isotropic gamma ray background (IGRB) constraints

Origin

Diffuse background $+$

- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?

Flux estimation for BHs

$$
I_{\text{BHs}} \approx \frac{1}{4\pi} E \int_{t_{\text{CMB}}}^{t_{\text{today}}} (1 + z(t)) \times \int_M \left[\frac{d\eta}{dM} \frac{d^2N}{dt dE} (M, (1 + z(t))E) dM \right] dt
$$

Comparison with $I_{\text{mes.}} \rightarrow$ constraints on PBHs mass function dn/dM .

IGRB and Kerr PBHs: monochromatic mass distributions

Main spin effects

- enhanced luminosity ⇒ stronger constraints
- reduced temperature ⇒ reduced emission energy ⇒ weaker constraints

IGRB and Kerr PBHs: Extension to broad mass functions

Main width effects

- broadening of the spectrum \Rightarrow stronger constraint
- broadening of the mass distribution \Rightarrow greater DM total density \Rightarrow weaker constraint

results for log-normal mass distribution $M {\rm d}n/{\rm d}M \propto \exp(-\ln(M/M_*)^2/2\sigma^2)$

e^{\pm} based measures: local measurement

- $\bullet\,$ PBHs of mass $M \lesssim 10^{17} \, \mathrm{g}$ emit e^\pm
- $\bullet \,\, e^\pm$ propagate in the galactic electromagnetic field
- \bullet terrestrial experiments measure the solar-modulated e^\pm flux
- $\bullet\,$ Voyager $1\,$ measures the unmodulated $e^\pm\,$ flux

e^{\pm} based measures: the 511 keV line

- $\bullet\,$ PBHs of mass $M \lesssim 10^{17} \, \mathrm{g}$ emit e^\pm
- $\bullet \,\, e^\pm$ annihilate locally/in DM-dense regions (Milky Way bulge)...
- ...emitting a 511 keV signal measured by telescopes

Comparison with recent constraints in the same mass range

General philosophy:

- monochromatic \rightarrow extended (realistic) mass functions
- Schwarzschild \rightarrow general PBHs (rotating, charged, ...)

Jérémy Auffinger 1988 and 1999 and 199

Ongoing work: Gravitational waves from Hawking radiation

PBHs emits gravitons, which can be interpreted as gravitational waves. Will the future GW experiments be able to see them in the stochastic background?

 \rightarrow Discovering gravitational waves emitted via Hawking radiation would validate the existence of the graviton

 \rightarrow Unique probe of the inflation parameters

Ongoing work: Primordial black holes: possibility of merger (1)

Is lifetime of PBHs smaller than merger duration?

Plain lines: PBH evaporation time (=lifetime) Dashed lines: merger time for two PBHs of same mass, for different initial distances D

Jérémy Aunger HEPHY, Vienna October 29th, 2019 40 / 43

Ongoing work: Primordial black holes: possibility of merger (2)

Is expansion too fast to allow for a merger?

Preliminary work by A. Arbey & J.-F. Coupechoux

For a given distance D, two BHs with masses above the lines merge faster than they move away because of expansion.

Jérémy Aunger HEPHY, Vienna October 29th, 2019 41 / 43

 \bullet ...

[Introduction](#page-2-0) [Primordial black holes](#page-12-0) [Hawking radiation](#page-21-0) [PBHs constraints](#page-32-0) [Perspectives](#page-40-0)

PBH-related projects

- Big Bang Nucleosynthesis (see e.g. Sedel'nikov 1996, Kohri 2000)
- galactic gamma & X-rays (see e.g. Ballestros et al. [arXiv:1906.10113])
- galactic positrons and antiprotons (see e.g. Boudaud & Cirelli [arXiv:1807.03075], DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])
- stability of extremal BHs

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT

Conclusions

Take-home messages

- Primordial black holes are good candidates for DM
- A broad range of masses is still possible
- Light PBHs are quantum objects
- PBHs of $\sim 10^{15}$ g may still be present and emit a lot of Hawking radiation

Perspectives

- Closing the remaining PBH mass windows for all DM into PBHs?
- Primordial BH / Astrophysical BH discrimination using GW events (mass/spin)?
- Graviton/gravitational wave duality tests?

References

- BlackHawk: <http://blackhawk.hepforge.org> [A. Arbey, J. Auffinger, 1905.04268]
- Any extremal black holes are primordial [A. Arbey, J. Auffinger, J. Silk, 1906.04196]
- Constraining primordial black hole masses with the isotropic gamma ray background [A. Arbey, J. Auffinger, J. Silk, 1906.04750]

Backup

Backup

Kerr Hawking radiation equations

Field equations + Kerr metric

Dirac:
$$
(i\partial - \mu)\psi = 0
$$
 (fermions) $d\tau^2 = (dt - a\sin^2\theta d\phi)^2 \frac{\Delta}{\Sigma} - \left(\frac{dr^2}{\Delta} + d\theta^2\right) \Sigma$
\nProca: $(\Box + \mu^2)\phi = 0$ (bosons) $-(\left(r^2 + a^2\right)d\phi - adt)^2 \frac{\sin^2\theta}{\Sigma}$

Teukolsky radial equation

$$
\frac{1}{\Delta^s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR}{dr} \right) + \left(\frac{K^2 + 2i s (r - M) K}{\Delta} - 4i s E r - \lambda_{slm} - \mu^2 r^2 \right) R = 0
$$

Change of variables $R \to Z$ and $r \to r^*$ defined by

$$
\frac{dr^*}{dr} = \frac{\rho^2}{\Delta} \implies r^*(r) = r + \frac{r_H r_+ + am/E}{r_+ - r_-} \ln\left(\frac{r}{r_+} - 1\right) - \frac{r_H r_- + am/E}{r_+ - r_-} \ln\left(\frac{r}{r_-} - 1\right)
$$

Schrödinger-like wave equation

$$
\frac{d^2 Z}{dr^{*2}} + (E^2 - V(r^*))Z = 0
$$
\n
$$
V(r^*) \text{ spin-dependent Chandrasekhar-Detweiler}
$$
\n
$$
\frac{d^2 Z}{dr^{*2}} + (E^2 - V(r^*))Z = 0
$$
\n
$$
\text{potentials (1970's)}
$$

Kerr Hawking radiation equations

Chandrasekhar-Detweiler potentials

$$
V_0(r) = \frac{\Delta}{\rho^4} \left(\lambda_{0\,lm} + \frac{\Delta + 2r(r - M)}{\rho^2} - \frac{3r^2 \Delta}{\rho^4} \right)
$$

\n
$$
V_{1/2, \pm}(r) = (\lambda_{1/2\,lm} + 1) \frac{\Delta}{\rho^4} \mp \frac{\sqrt{(\lambda_{1/2, l,m} + 1)\Delta}}{\rho^4} \left((r - M) - \frac{2r\Delta}{\rho^2} \right)
$$

\n
$$
V_{1, \pm}(r) = \frac{\Delta}{\rho^4} \left((\lambda_{1\,lm} + 2) - \alpha^2 \frac{\Delta}{\rho^4} \mp i\alpha \rho^2 \frac{d}{dr} \left(\frac{\Delta}{\rho^4} \right) \right)
$$

\n
$$
V_2(r) = \frac{\Delta}{\rho^8} \left(q - \frac{\rho^2}{(q - \beta\Delta)^2} \left((q - \beta\Delta) \left(\rho^2 \Delta q'' - 2\rho^2 q - 2r(q'\Delta - q\Delta') \right) \right) + \rho^2 (\kappa \rho^2 - q' + \beta\Delta') (q'\Delta - q\Delta') \right)
$$

 $\rho^2 \equiv r^2 + \alpha^2$ and $\alpha^2 \equiv a^2 + am/E$

$$
q(r) = \nu \rho^4 + 3\rho^2 (r^2 - a^2) - 3r^2 \Delta
$$

\n
$$
q'(r) = r ((4\nu + 6)\rho^2 - 6(r^2 - 3Mr + 2a^2))
$$

\n
$$
q''(r) = (4\nu + 6)\rho^2 + 8\nu r^2 - 6r^2 + 36Mr - 12a^2
$$

\n
$$
\beta_{\pm} = \pm 3\alpha^2
$$

\n
$$
\kappa_{\pm} = \pm \sqrt{36M^2 - 2\nu(\alpha^2(5\nu + 6) - 12a^2) + 2\beta\nu(\nu + 2)}
$$

Jérémy Auffinger 1988 and 1999 HEPHY, Vienna – October 29th, 2019 1999 1999 1999 46 / 43

Luminosities for all spins

Page parameters (Page 1976)

$$
f(M, a^*) \equiv -M^2 \frac{dM}{dt} = M^2 \int_0^{+\infty} \sum_{dof.} \frac{E}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} dE
$$

$$
g(M, a^*) \equiv -\frac{M}{a^*} \frac{dJ}{dt} = \frac{M}{a^*} \int_0^{+\infty} \sum_{dof.} \frac{m}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} dE
$$

Evolution equations (Page 1976)

$$
\frac{dM}{dt} = -\frac{f(M, a^*)}{M^2}
$$

$$
\frac{da^*}{dt} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}
$$

Decrease of BH lifetime τ for increasing initial spin ${\sf a}_i^*$, compared to the Schwarzschild case (τ_0)

Log-normal distribution

Definition

$$
\frac{\mathrm{d}n}{\mathrm{d}M} = \frac{A}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{(\ln(M/M_*))^2}{2\sigma^2}\right)
$$

 M^* = central mass, σ = width (dimensionless)

GW background from PBH graviton emission

FIG. 7: Today's gravity wave spectrum, for $a_{*,i} = 0.99999$. $\rho_i = 10^{-12}$ for the upper plot, and $\rho_i = 10^{-28}$ for the lower one. In each plot, four curves from top to bottom, are for $\beta = 10^{-2}$, 10^{-4} , 10^{-8} , 10^{-16} , respectively.

FIG. 8: Today's gravity wave spectrum for $a_{i,*} = 0.99999$. $\beta = 10^{-2}$ for the upper plot, and $\beta = 10^{-16}$ for the lower one. In each plot, blue, orange and green curves are for $\rho_i = 10^{-12}$, 10^{-20} , 10^{-28} , respectively.