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Dark matter and Galaxy Rotation Curves

• Large Spiral Galaxies

ρdeduced ∝ r−2 � ρstars ∝ e−r/r0

• Dwarf Spiral Galaxies

Well known baryonic contribution
Dark matter dominates those objects
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Gravitational lensing

Image taken by HST
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Bullet Cluster

Image reconstructed with HST & Chandra

Dark Matter is independent from baryonic matter!
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Cosmological Standard Model

Friedmann-Lemaître Universe

• Homogeneous and Isotropic Universe

• Robertson-Walker metric: dτ2 = dt2 − a(t)2
{

dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dϕ2

}
a(t) scale factor

k space curvature (0: �at, 1: spheroid, -1: hyperboloid)

• Adiabatic cosmic �uids: matter, radiation, dark energy, ... (ρ,P)

• Einstein-Friedmann equations:


H2 =

(
ȧ

a

)2

=
8πG

3
ρ−

k

a2
ä

a
= −

4πG

3
(ρ+ 3P)

Today (H0 Hubble-Lemaître constant): H2
0 =

8πG

3
ρ0 −

k

a2
0

≡
8πG

3
ρ0C ← critical density

Cosmological parameters (for each component): Ωcomp =
ρ0comp

ρ0C
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Cosmic Microwave Background (CMB)
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Cosmological Parameters

+ Approximately FLAT
Curvature k compatible with 0
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Dark Matter Candidates

• Massive neutrinos

• Weakly Interacting Massive Particles (WIMPs)

In particular, many particle physics models provide WIMP
candidates!

• Other particles/�elds: axions, dark �uids, ...

Exotic and non-baryonic particles

• Black Holes

Not possible with stellar and supermassive black holes

• Modi�ed Gravitation Laws

MOND, TeVeS, Scalar-tensor theories, ...
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History of the Universe

Recombination (and emission of the CMB) is the limit between the dark times and the
observable Universe
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What happened during the dark times before recombination?

T

−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
→ • How to describe the beginning of the Universe (∼ Planck energy)?

Quantum gravity? Brane theories? Other gravitation theories?

• What did drive in�ation in the early Universe? When did it end?

• Do/did topological defects (magnetic monopoles, cosmic strings, domain
walls, ...) exist?

• What did happen during leptogenesis?

• What did happen during baryogenesis?

• Where does the particle-antiparticle asymmetry come from?

• Do we fully understand the properties of the QCD-dominated plasma?

• Do we fully understand Big-Bang nucleosynthesis?

What about (Primordial) Black Holes?
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Black holes

In the following we place ourselves in a natural unit system with c = ~ = kB = G = 1.

Schwarzschild metric for a static compact object of mass M

dτ2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M

r

− r2(dθ2 + sin2(θ) dφ2)

One de�nes the Schwarzschild radius: Rs = 2M.
If the mass M is completely within r < Rs , the radius r = Rs consistutes a horizon.

−→ Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

dτ2 =
(
dt − a sin2(θ)dφ

)2 ∆

Σ
−
(
dr2

∆
+ dθ2

)
Σ

−
(
(r2 + a2)dφ− adt

)2 sin2(θ)

Σ

a = J/M, Σ = r2 + a2 cos2(θ), ∆ = r2 − Rs r + a2, Rs = 2M

The horizon exists but is deformed and �attened−→ Kerr (rotating) Black Hole!

Jérémy Au�nger HEPHY, Vienna � October 29th, 2019 13 / 43



Introduction Primordial black holes Hawking radiation PBHs constraints Perspectives

Black holes

In the following we place ourselves in a natural unit system with c = ~ = kB = G = 1.

Schwarzschild metric for a static compact object of mass M

dτ2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M

r

− r2(dθ2 + sin2(θ) dφ2)

One de�nes the Schwarzschild radius: Rs = 2M.
If the mass M is completely within r < Rs , the radius r = Rs consistutes a horizon.

−→ Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

dτ2 =
(
dt − a sin2(θ)dφ

)2 ∆

Σ
−
(
dr2

∆
+ dθ2

)
Σ

−
(
(r2 + a2)dφ− adt

)2 sin2(θ)

Σ

a = J/M, Σ = r2 + a2 cos2(θ), ∆ = r2 − Rs r + a2, Rs = 2M

The horizon exists but is deformed and �attened−→ Kerr (rotating) Black Hole!

Jérémy Au�nger HEPHY, Vienna � October 29th, 2019 13 / 43



Introduction Primordial black holes Hawking radiation PBHs constraints Perspectives

Observed black holes

Three types of black holes have been discovered

• Stellar black holes
BHs originated in the explosion of massive stars/supernovae, ∼ 3− 100M�

• Intermediate mass black holes (IMBH)
New class of recently discovered BHs, ∼ 103 − 106 M�

• supermassive black holes (SMBH)
BHs at the center of galaxies, ∼ 106 − 109 M�
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Origin of primordial black holes

Multiple in�ationary origins

• collapse of large primordial overdensities

• phase transitions

• collapse of topological defects (cosmic strings, domain walls)

Mass predictions

PBHs form when a density �uctuation enters the Hubble horizon, so

MPBH ∼ MPlanck ×
t0

tPlanck
∼ 1038 g ×

( t0
1 s

)
where t0 is the creation time.

We get:

• M ∼ 10−5 g for t0 ∼ 10−43 s → Planck black holes

• M ∼ 1015 g for t0 ∼ 10−23 s → lightest black holes still (possibly) existing

• M ∼ 105 M� for t0 ∼ 1 s → IMHB? seeds for SMBH?
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Angular momentum of primordial Black Holes

Angular momentum given by the dimensionless parameter a∗ ≡ J/M2

a∗ ∈ [0, 1]

a∗ = 0 for Schwarzschild BHs, a∗ = 1 for extremal Kerr BHs

Spin predictions

Standard in�ationary models
=⇒ low spin

Transient matter domination
=⇒ high spin
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The Cosmic Uroboros

A cosmic vision of PBHs by B. Carr (from arXiv:1703.08655)

1015g

1010g

10-5g

1 MO

109 MO QSO

Stellar

evaporating

exploding

Planck Universal

106 MO MW

1021glunar

1022 MO

102 MO IMBH

1025gterrestrial

HIGHER&DIMENSIONS

MICRO/MACRO

Higgs  250 GeV

DE 10-4eV

Proton 1 GeV

graviton 10-32eV
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Primordial Black Holes
Plausible Dark Matter candidates

• no need for Standard Model or General Relativity extension

• dynamically cold

• no need to prove BH existence

• constrained, but mass ranges still available for BHs to represent all of dark matter

Many constraints, but many are not robust!
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Primordial Black Holes
Plausible Dark Matter candidates

• no need for Standard Model or General Relativity extension

• dynamically cold

• no need to prove BH existence

• constrained, but mass ranges still available for BHs to represent all of dark matter

More realistically: constraints from radiation, lensing and dynamics observations
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Why are PBHs so special?

Light PBHs cannot be described only with General Relativity...

from B. Carr

... because they emit Hawking radiation!
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Black hole Hawking radiation

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin
parameter a∗:

Qi =
d2Ni

dtdE
=

1

2π

∑
dof.

Γi (M,E , a∗)

eE ′/T (M,a∗) ± 1

Γi is the greybody factor (∼ absorption coe�cient in Planck's black-body law, corrected
by the gravitational potential well)
E ′ is the energy corrected for horizon rotation
± stand for fermions/bosons
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Hawking temperature

Hawking temperature for Kerr BHs

T (M, a∗) =
1

4πM

( √
1− (a∗)2

1 +
√
1− (a∗)2

)
Schwarzschild−→

a∗ = 0

1

8πM

Kerr extremal−→
a∗ = 1

0

Comparison with the e± rest mass and QCD scale ΛQCD
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What does Hawking radiation tells us

Di�erent scales, di�erent times...

• M ∼ 10−5 g → Planck mass PBHs → probes of quantum gravity

• M ∼ 1013 g → QCD-scale PBHs → BBN perturbation

• M ∼ 1015 g → PBHs emitting a lot of particles today → cosmic rays

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . evaporation limit

• M � 1015 g → PBHs with low Hawking emission → lensing, mergers, GWs
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Kerr Hawking radiation equations

Kerr metric

ds2 =

(
1− 2Mr

Σ2

)
dt2 +

4a∗M2r sin2(θ)

Σ2
dt dφ− Σ2

∆
dr2

− Σ2
dθ2 −

(
r2 + (a∗)2M2 +

2(a∗)2M3r sin2(θ)

Σ2

)
sin2(θ)dφ2

Σ ≡ r2 + (a∗)2M2 cos2(θ) and ∆ ≡ r2 − 2Mr + (a∗)2M2

Equations of motion in free space

Dirac : (i /∂ − µ)ψ = 0 (fermions)

Proca : (�+ µ2)φ = 0 (bosons)

µ = rest mass
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Kerr Hawking radiation equations

Teukolsky radial equation

1

∆s

d

dr

(
∆s+1 dR

dr

)
+

(
K2 + 2i s(r −M)K

∆
− 4i sEr − λslm − µ2r2

)
R = 0

R radial component of ψ, φ
K ≡ (r2 + a2)E + am, s = spin, l = angular momentum and m = projection of l
λslm eigenvalue of the angular equation

Transformation into a Schrödinger wave equation

Change R −→ Z and r −→ r∗ (generalized Eddington-Finkelstein coordinate system)
(Chandrasekhar & Detweiler 1970s)

d2Z

dr∗2
+ (E 2 − V (r∗))Z = 0

Solved with purely outgoing solution at horizon Z −→
r∗→−∞

e−i Er∗

Transmission coe�cient Γ ≡ |Z+∞
out /Z

horizon
out |2 → greybody factor
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Advertisement: BlackHawk

First public C code computing Hawking radiation:

• Schwarzschild & Kerr PBHs

• primary spectra of all Standard Model fundamental particles + graviton

• secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)

• extended mass (and spin) functions

• time evolution of the PBHs

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693
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Enhanced emission for rotating BHs

BH-particle spin coupling ⇒ superradiance e�ects (see e.g. Chandrasekhar & Detweiler
papers in the 1970s)
The Hawking radiation is enhanced for particles of spin 1 or 2.

Example of spin 1 massless emissivity (photon)
Dotted lines = Hawking temperature
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Black hole lifetime

Evolution equations

dM

dt
= − f (M, a∗)

M2

da∗

dt
=

a∗(2f (M, a∗)− g(M, a∗))

M3

f ∼
∫
E

energy × emission

g ∼
∫
E

angular momentum × emission

Schwarzschild BH lifetime:

τS ∝ M3

• M ∼ MPlanck =⇒ τS ∼ tPlanck

• M ∼ 1015 g =⇒ τS ∼ t0

• M ∼ M� =⇒ τS ∼ 1066 y

BH mass (solid) and spin (dotted) evolution

mass normalized to initial mass Mi
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Extremal spin today?

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating
BHs from disk accretion (a∗ < 0.998) or mergers?

→ Yes, with su�ciently massive and extremal PBHs

PBH �nal spin as a function of its initial mass
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Constraints on PBHs...

... from Hawking radiation

• BBN perturbation through hadronic injection + photo-dissociation

• CMB distorsion through energy/entropy injection

• cosmic rays (photons, electrons, antiparticles)

• gravitational waves?

• ...

... from other e�ects

• gravitational lensing

• galaxy dynamics (cusp/core problem)

• gravitational wave merger events

• white dwarfs/neutron star disruption

• ...

... and combined constraints from PBHs+WIMPs models!
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Isotropic gamma ray background (IGRB) constraints

Origin

Di�use background +

• Active galactic nuclei

• Gamma ray bursts

• DM annihilation/decay?

• Hawking radiation?

Flux estimation for BHs

IBHs ≈
1

4π
E

∫ ttoday

tCMB

(1 + z(t))

×
∫
M

[
dn

dM

d2N

dtdE
(M, (1 + z(t))E)dM

]
dt

Comparison with Imes. → constraints on PBHs mass function dn/dM.
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IGRB and Kerr PBHs: monochromatic mass distributions

Main spin e�ects

• enhanced luminosity ⇒ stronger constraints

• reduced temperature ⇒ reduced emission energy ⇒ weaker constraints

Monochromatic constraints from the IGRB
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IGRB and Kerr PBHs: Extension to broad mass functions

Main width e�ects

• broadening of the spectrum ⇒ stronger constraint

• broadening of the mass distribution ⇒ greater DM total density ⇒ weaker constraint

results for log-normal mass distribution Mdn/dM ∝ exp(− ln(M/M∗)
2/2σ2)
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e± based measures: local measurement

• PBHs of mass M . 1017 g emit e±

• e± propagate in the galactic electromagnetic �eld
• terrestrial experiments measure the solar-modulated e± �ux
• Voyager 1 measures the unmodulated e± �ux
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e± based measures: the 511 keV line

• PBHs of mass M . 1017 g emit e±

• e± annihilate locally/in DM-dense regions (Milky Way bulge)...

• ...emitting a 511 keV signal measured by telescopes
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Comparison with recent constraints in the same mass range

General philosophy:

• monochromatic → extended (realistic) mass functions

• Schwarzschild → general PBHs (rotating, charged, ...)

Lots of e�orts to close the small-mass window!
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Ongoing work: Gravitational waves from Hawking radiation

PBHs emits gravitons, which can be interpreted as gravitational waves.
Will the future GW experiments be able to see them in the stochastic background?

MPBH ∼ 1038 g×
( t0
1 s

)

→ Discovering gravitational waves emitted via Hawking radiation would validate the
existence of the graviton

→ Unique probe of the in�ation parameters
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Ongoing work: Primordial black holes: possibility of merger (1)

Is lifetime of PBHs smaller than merger duration?

Preliminary work by A. Arbey & J.-F. Coupechoux

Plain lines: PBH evaporation time (=lifetime)
Dashed lines: merger time for two PBHs of same mass, for di�erent initial distances D
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Ongoing work: Primordial black holes: possibility of merger (2)

Is expansion too fast to allow for a merger?

Preliminary work by A. Arbey & J.-F. Coupechoux

For a given distance D, two BHs with masses above the lines merge faster than they
move away because of expansion.
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PBH-related projects

• Big Bang Nucleosynthesis (see e.g. Sedel'nikov 1996, Kohri 2000)

• galactic gamma & X-rays (see e.g. Ballestros et al. [arXiv:1906.10113])

• galactic positrons and antiprotons (see e.g. Boudaud & Cirelli [arXiv:1807.03075],
DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])

• stability of extremal BHs

• ...

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT
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Conclusions

Take-home messages

• Primordial black holes are good candidates for DM

• A broad range of masses is still possible

• Light PBHs are quantum objects

• PBHs of ∼ 1015 g may still be present and emit a lot of Hawking radiation

Perspectives

• Closing the remaining PBH mass windows for all DM into PBHs?

• Primordial BH / Astrophysical BH discrimination using GW events (mass/spin)?

• Graviton/gravitational wave duality tests?

References

• BlackHawk: http://blackhawk.hepforge.org [A. Arbey, J. Au�nger, 1905.04268]

• Any extremal black holes are primordial [A. Arbey, J. Au�nger, J. Silk, 1906.04196]

• Constraining primordial black hole masses with the isotropic gamma ray background
[A. Arbey, J. Au�nger, J. Silk, 1906.04750]
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Kerr Hawking radiation equations

Field equations + Kerr metric

Dirac : (i /∂ − µ)ψ = 0 (fermions)

Proca : (� + µ
2)φ = 0 (bosons)

dτ2 =
(
dt − a sin2 θdφ

)2 ∆

Σ
−
(

dr2

∆
+ dθ2

)
Σ

−
(

(r2 + a2)dφ− adt
)2 sin2 θ

Σ

Teukolsky radial equation

1

∆s

d

dr

(
∆s+1 dR

dr

)
+

(
K2 + 2i s(r −M)K

∆
− 4i sEr − λslm − µ2r2

)
R = 0

Change of variables

R → Z and r → r∗ de�ned by

dr∗

dr
=
ρ2

∆
=⇒ r∗(r) = r +

rHr+ + am/E

r+ − r−
ln

(
r

r+
− 1

)
−

rHr− + am/E

r+ − r−
ln

(
r

r−
− 1

)

Schrödinger-like wave equation

d
2Z

dr∗2
+ (E2 − V (r∗))Z = 0

V (r∗) spin-dependant Chandrasekhar-Detweiler
potentials (1970's)
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Kerr Hawking radiation equations

Chandrasekhar-Detweiler potentials

V0(r) =
∆

ρ4

(
λ0 lm +

∆ + 2r(r −M)

ρ2
−

3r2∆

ρ4

)

V1/2,±(r) = (λ1/2 lm + 1)
∆

ρ4
∓

√
(λ1/2,l,m + 1)∆

ρ4

(
(r −M)−

2r∆

ρ2

)
V1,±(r) =

∆

ρ4

(
(λ1 lm + 2)− α2 ∆

ρ4
∓ iαρ2

d

dr

(
∆

ρ4

))

V2(r) =
∆

ρ8

(
q −

ρ2

(q − β∆)2

(
(q − β∆)

(
ρ
2∆q′′ − 2ρ2q − 2r(q′∆− q∆′)

)

+ρ2(κρ2 − q′ + β∆′)(q′∆− q∆′)
))

ρ2 ≡ r2 + α2 and α2 ≡ a2 + am/E

q(r) = νρ
4 + 3ρ2(r2 − a2)− 3r2∆

q′(r) = r
(

(4ν + 6)ρ2 − 6(r2 − 3Mr + 2a2)
)

q′′(r) = (4ν + 6)ρ2 + 8νr2 − 6r2 + 36Mr − 12a2

β± = ±3α2

κ± = ±
√

36M2 − 2ν(α2(5ν + 6)− 12a2) + 2βν(ν + 2)
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Luminosities for all spins
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Evolution parameters

Page parameters (Page 1976)

f (M, a∗) ≡ −M2 dM

dt
= M2

∫ +∞

0

∑
dof.

E

2π

Γ(E ,M, a∗)

eE ′/T ± 1
dE

g(M, a∗) ≡ −M

a∗
dJ

dt
=

M

a∗

∫ +∞

0

∑
dof.

m

2π

Γ(E ,M, a∗)

eE ′/T ± 1
dE

Evolution equations (Page 1976)

dM

dt
= − f (M, a∗)

M2

da∗

dt
=

a∗(2f (M, a∗)− g(M, a∗))

M3
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Reduced lifetime

Decrease of BH lifetime τ for increasing initial spin a∗i , compared to the Schwarzschild
case (τ0)
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Log-normal distribution

De�nition

dn

dM
=

A√
2πσM

exp

(
− (ln(M/M∗))2

2σ2

)
M∗ = central mass, σ = width (dimensionless)

Log-normal distributions (M∗ = 3× 1015 g)
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GW background from PBH graviton emission
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