Probing the Intensity Frontier at the LHC

June 3rd 2020 DM@LHC 2020

Felix Kling

send questions to: felixk@slac.stanford.edu

Part I: DM at the LHC

Part 2: Neutrinos at the LHC

Felix Kling

DM at the LHC: iDM

- concrete DM example with LLP: inelastic DM
 - * two dark particles Xi, coupled non-diagonally to to A'
 - * phenomenological lagrangian:

$$\mathcal{L} \subset \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu} - \bar{\chi}_i (i\partial \!\!\!/ - m_i) \chi_i + \bar{f}_i (i\partial \!\!\!/ - \epsilon e q_i A'_{\mu}) f + i e_D A'_{\mu} \bar{\chi}_1 \gamma^{\mu} \chi_2$$

* mass splitting: avoids direct detection constrains

Felix Kling

Looking forward to new Physics with FASER

DM at the LHC: iDM

Intensity frontier experiments

- * dedicated experiments
- * b-factories
- * neutrino experiments
- * nuclear physics experiments

LHC

- * far detectors
- * displaced muon jets
- * timing

[Berlin, FK <u>1810.01879</u>]

Felix Kling

Looking forward to new Physics with FASER

DM at the LHC: iDM

- some updates on SeaQuest:
- * SeaQuest (E906): run with A' trigger in 2017; no physics results expected
- * SpinQuest (E1039): run 2020-2022; A' searches in di-muon channel

- * DarkQuest: add EMCal in main detector, see 1804.00661, conduct when beam is off
- * LongQuest: add EMCal 10 m behind main detector, see 1908.07525

Felix Kling

Looking forward to new Physics with FASER

DM at the LHC: secondary production

Felix Kling

Looking forward to new Physics with FASER

Part I: DM at the LHC

Part 2: Neutrinos at the LHC

Felix Kling

Neutrinos at the LHC

- neutrinos detected from many sources, but not from colliders
- many neutrinos at LHC produced in π , K, D meson decay
 - \rightarrow provides intense energetic collimated neutrino beam in forward direction
 - * ~10¹² neutrino in LHC Run 3 * E~TeV * θ ~ mrad * all flavors
- 480m downstream from ATLAS, this beam passes through (unused) side tunnel
 → place neutrino detector directly into this beam

Neutrinos at the LHC

- two recent proposals for LHC neutrino detectors
 - \rightarrow emulsion detector technology
 - * 3D tracking devices with 50 nm spatial precision
 - * flavor identification
 - * energy measurements

FASERv

- * tungsten target with 1.2 ton mass * ~20000 ν_{μ} , ~2000 ν_{e} , ~20 ν_{τ}
- * Letter of Intent: <u>1908.02310</u> * Technical Proposal: <u>2001.03073</u>
- * approved and funded

SND@LHC

* lead tungsten target with 380 kg mass * ~1000 vµ, ~100 ve, ~10 vT

* Letter of Intent: <u>2002.08722</u>

Felix Kling

Emulsion Detectors

In the following, I will present some ideas*.

Most of them were not investigated in detail yet.

* Warning: not all ideas will work

Neutrino Production

- use observed neutrino spectrum to measure neutrino production rate
- validate/improve/constrain hadronic interaction models or PDFs
 * used for LHC and cosmic rays physics
 - * example: intrinsic charm
 - * important input for HE neutrino observatories (similar CM energy)

* Warning: not all ideas will work

Neutrino Production

- use observed neutrino spectrum to measure neutrino production rate
- validate/improve/constrain hadronic interaction models or PDFs * used for LHC and cosmic rays physics
 - * example: intrinsic charm
 - * important input for HE neutrino observatories (similar CM energy)

Looking forward to neutrinos at the LHC

 10^{1}

LEP

Neutrino Propagation

- no oscillations in SM
- maybe we can use FASERv as short-baseline experiment
- sterile neutrinos with mass ~40eV can cause oscillations
 * changes shape of energy spectrum
- how about NSI? $\mathcal{L} \sim \epsilon^f_{ij} (\bar{\nu}_i \gamma_\mu \nu_j) (\bar{f} \gamma^\mu f)$

Neutrino Interactions

- use observed neutrino spectrum to measure neutrino interaction XS
 - * high energy E~TeV
 - * all 3 neutrino flavors

- * DIS regime
- * first sensitivity estimate

* Warning: not all ideas will work

Felix Kling

Neutrino Interactions

- use observed neutrino spectrum to measure neutrino interaction XS
 * high energy E~TeV
 * all 3 neutrino flavors
 * first sensitivity estimate
- nuclear effects in tungsten target: input for nPDFs
 * shadowing, anti-shadowing, EMC
- event shapes & neutrino generator tuning

Neutrino Interactions

- use observed neutrino spectrum to measure neutrino interaction XS
 * high energy E~TeV
 * all 3 neutrino flavors
 * first sensitivity estimate
- nuclear effects in tungsten target: input for nPDFs
 * shadowing, anti-shadowing, EMC
- event shapes & neutrino generator tuning
- charm associated neutrino interactions
 *~10% of events have charm in final state
 * was used at CHORUS to measure strange PDFs, Vdc, charm fragmentation
- bottom associated neutrino interactions
 * strongly suppressed in SM: O(0.1) events expected
 - * sensitivity to BSM models explaining b-physics anomalies (probably not)

* Warning: not all ideas will work

intrinsic charm

light weakly interacting particles

measurements strange and nuclear PDFs neutrino generator tuning heavy flavor associated neutrino interactions

+ many more ideas

Physics potential studies have just started. More detailed studies needed - and you can help!

Let's think big: Snowmass 2021 just started. Bigger + better detectors possible at HL-LHC

That's it

Felix Kling