Dark Matter Capture in Neutron Stars

Nicole Bell

ARC Centre of Excellence for Dark Matter Particle Physics, The University of Melbourne, Australia

with Giorgio Busoni, Sandra Robles & Michael Virgato

arXiv:1807.02840 (JCAP 2018), arXiv:1904.09803 (JCAP 2019), arXiv:2004.14888

Dark Matter Capture in Stars

\rightarrow an alternative approach to DM-nucleon scattering experiments

Considerable quantities of dark matter can accumulate in the Earth, Sun or other stars.

Due to their extreme density, *neutron stars* capture dark matter very efficiently.

NS Capture probability is of order unity when $\sigma_{n\chi} > \sigma_{th} \sim 10^{-45} \text{ cm}^2$

Image: NASA

Neutron Stars \rightarrow Black holes?

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar; NFB, Petraki & Melatos; Bertone, Nelson & Reddy; and others.

- Due to their density, neutron stars capture dark matter very efficiently
- Can neutron stars accumulate so much dark matter that they would collapse to back holes? Yes, but typically only if:
 - No annihilation (e.g. asymmetric DM)
 - DM is bosonic and condenses to a small self gravitating BEC, or
 - DM is fermionic with attractive self-interactions, and
 - No repulsive-self interactions that prevent collapse (even very <u>very</u> tiny selfinteraction is enough) NFB, Petraki & Melatos, PRD 2013
 - \rightarrow Black hole formation quite unlikely for *typical* WIMP-like dark matter

Neutron Star Kinetic Heating

Collisions transfer the dark matter kinetic energy to the neutron star → heating

Dark matter heating

→ from scattering plus annihilation

Baryakhtar, Bramante, Li, Linden and Raj

- Capture (plus subsequent energy loss)
 → DM *kinetic energy* heats neutron star ~ 1700K
- Annihilation of thermalised dark matter
 → DM rest mass energy heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering. If there is some kinematic suppression of the scattering process, it can take much longer (velocity or momentum suppressions; inelastic, etc)

Cooling and Heating

In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

 $C \frac{dT^{\infty}}{dt} = -L_{\nu}^{\infty} - L_{\gamma}^{\infty} + L_{DM}^{\infty} + L_{other heating}^{\infty}$ = cooling by ν and γ emission + heating due to dark matter

- Early cooling is dominated by neutrino emission
- Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 10^4 K. Astrophys.J. 874 (2019) no.2, 175

Old isolated neutron stars should cool to: 100

1000 K after ~ 10 Myr 100 K after ~ 1 Gyr

Detecting the Heating

Nearby $\lesssim 50 \text{ pc}$ isolated old NSs

M. Baryakhtar et al. PRL 119, 131801 (2017) arXiv:1704.01577

FAST (radio)

JWST (NIRCam)

Neutron Star Heating: Advantages

✓ High probability of gravitational capture.

✓ DM particles accelerated to O(0.5c) **→ no momentum suppression**

✓ Cross section for efficient trapping $O(10^{-45} \text{ cm})$ for large DM mass range

Unlike direct detection, not restricted by recoil detection threshold.

✓ Similar sensitivity to SI and SD cross scattering

Elastic and inelastic scattering cross sections of same order of magnitude.

Kinetic Heating Sensitivity

Direct Detection vs Neutron Stars

Operator			Coupling	Direct Detection	Momentum suppressed	DD vs NS
D1	SS	$(\bar{\chi}\chi)(\bar{q}q)$	y_q/Λ^2	SI	×	NS or DD
D2	PS	$(\bar{\chi}\gamma_5\chi)(\bar{q}q)$	y_q/Λ^2	SI	\checkmark	NS
D3	SP	$(\bar{\chi}\chi)(\bar{q}\gamma_5 q)$	y_q/Λ^2	SD	\checkmark	NS
D4	PP	$(\bar{\chi}\gamma_5\chi)(\bar{q}\gamma_5q)$	y_q/Λ^2	SD	\checkmark	NS
D5	VV	$(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma_{\mu}q)$	$1/\Lambda^2$	SI	×	NS or DD
D6	VA	$(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)$	$1/\Lambda^2$	SI,SD	\checkmark	NS
D7	AV	$(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}q$	$1/\Lambda^2$	SD	\checkmark	NS
D8	AA	$(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma_{\mu}\gamma_{5}q)$	$1/\Lambda^2$	SD	×	NS

Projected neutron star heating sensitivity:

- comparable to direct detection experiments for scalar and vector interactions
- more sensitive than DD for all other interaction types (typically by orders of magnitude.

Neutron star sensitivity - SI scattering

SI scattering

q^2 suppressed SD scattering

105 LUX (SD) $T_{kin}^{\infty,th} = 1700K$ ---- Darwin (SD) 10^{4} T^{∞, th}=500K $T_{kin}^{\infty,th} = 100K$ 10³ $\Lambda(GeV)$ 10² 10^{1} $\bar{\chi}\chi \, \bar{q}\gamma^5 q$ 100 10^{-1} 10^{0} 10² 10^{3} 104 10⁵ 10^{6} 101 $m_{\gamma}(\text{GeV})$

q^4 suppressed SD scattering

NS sensitivity comparable to direct detection

NS sensitivity greatly surpasses direct detection experiments

NFB, Busoni, Robles, arXiv:1807.02840

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Lepton density of few % in NS core, lower in crust. Fermi-momentum ~ constant in core.

DM@LHC 2020 – Hamburg (remotely) – 4 June 2020 – N. Bell, U.Melbourne

Neutron Star Equation of State

Brussels-Montreal EoS functionals from Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)

EoS	BSk24-1	BSk24-2	BSk25-1	BSk25-2					
$\rho_c [\mathrm{g} \mathrm{cm}^{-3}]$	7.76×10^{14}	2.00×10^{15}	7.46×10^{14}	2.10×10^{15}					
$M [M_{\odot}]$	1.500	2.271	1.400	2.222					
$R \; [\mathrm{km}]$	12.593	11.310	12.387	11.166					
NS core									
$M_{\rm core} \ [M_{\odot}]$	1.483	2.266	1.383	2.217					
$R_{\rm core} [{\rm km}]$	11.643	10.977	11.389	10.834					
$\langle Y_n(r) \rangle$	92.68~%	86.43~%	93.69~%	86.41~%					
$\langle Y_p(r) \rangle$	7.32~%	13.57%	6.31~%	13.59~%					
$\langle Y_e(r) \rangle$	5.46~%	8.41~%	4.86~%	8.37~%					
$\langle Y_{\mu}(r) \rangle$	1.85~%	5.16~%	$1,\!44~\%$	5.22%					
$\langle p_{F,n}(r) \rangle [\text{MeV}]$	372.56	426.11	374.80	428.72					
$\langle p_{F,p}(r) \rangle [\text{MeV}]$	160.23	230.36	152.79	230.57					
$\langle p_{F,e}(r) \rangle [\text{MeV}]$	145.64	197.67	140.31	197.98					
$\langle p_{F,\mu}(r) \rangle \; [\text{MeV}]$	50.38	89.58	45.66	90.01					

Composition varies according to the neutron star EoS

Insensitive to details of NS Equation of State

NFB, Busoni & Robles arXiv:1904.09803

Neutron star limits on leptophilic DM

Leptophilic DM

NS sensitivity has the potential to greatly surpass electron-recoil direct detection experiments.

Improved capture calculations

Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

- \circ $\,$ Consistent treatment of NS structure $\,$
 - Radial profiles of EoS dependent parameters, and GR corrections by solving the Tolman-Oppenheimer-Volkov eqns.
- o Gravitational focusing
 - DM trajectories bent toward the NS star
- o Fully relativistic (Lorentz invariant) scattering calculation
 - Including the fermi momentum of the target particle
- o Pauli blocking
 - Suppresses the scattering of low mass dark matter
- o Neutron star opacity
 - Optical depth
- o Multi-scattering effects
 - For large DM mass, probability that a collision results in capture is less than 1

Neutron star opacity

NFB, Busoni, Robles & Virgato arXiv:2004.14888

Improved capture calculations

Including Pauli blocking, multiscattering and opacity effects.

Summary & Conclusions

Dark matter capture in stars \rightarrow cosmic laboratory to probe DM scattering interactions

- Completely different kinematic regime to direct detection experiments
 - Scattering of quasi-relativistic dark matter \rightarrow no velocity or momentum suppressions
- Excellent sensitivity to DM-lepton scattering cross sections, with electron and especially muon scattering.
- Neutron Star kinetic heating sensitivity is better than current and forthcoming direct detection experiments, for both nuclear-recoil and electron-recoil scattering.
- Capture calculations have recently been refined and improved.