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Dark Matter Capture in Stars
 an alternative approach to DM-nucleon scattering experiments
Considerable quantities of dark matter can accumulate in the Earth, Sun or other stars.

Scattering
DM

NS Capture probability is of order unity when 𝜎𝜎𝑛𝑛𝑛𝑛 > 𝜎𝜎𝑡𝑡𝑡~10−45cm2

Image: NASA 

Due to their extreme density, 
neutron stars capture dark 
matter very efficiently.
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Neutron Stars → Black holes?

• Due to their density, neutron stars capture dark matter very efficiently

• Can neutron stars accumulate so much dark matter that they would collapse to 
back holes? Yes, but typically only if:
• No annihilation (e.g. asymmetric DM)
• DM is bosonic and condenses to a small self gravitating BEC, or 
• DM is fermionic with attractive self-interactions, and
• No repulsive-self interactions that prevent collapse (even very very tiny self-

interaction is enough) NFB, Petraki & Melatos, PRD 2013

 Black hole formation quite unlikely for typical WIMP-like dark matter

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar;  NFB, Petraki & Melatos; 
Bertone, Nelson & Reddy; and others.
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Neutron Star Kinetic Heating

Scattering

DM

M. Baryakhtar et al. 
PRL 119, 131801 (2017)
arXiv:1704.01577

TNS ~1700 K
1 - 2 μm
near IR

Collisions transfer the 
dark matter kinetic energy 
to the neutron star
 heating
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Dark matter heating 
 from scattering plus annihilation 

Baryakhtar, Bramante, Li, Linden and Raj 

• Capture (plus subsequent energy loss)
 DM kinetic energy heats neutron star ~ 1700K

• Annihilation of thermalised dark matter
 DM rest mass energy heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering.  If there is 
some kinematic suppression of the scattering process, it can take much longer (velocity or 
momentum suppressions; inelastic, etc)
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Cooling and Heating
In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

𝐶𝐶 𝑑𝑑𝑇𝑇∞

𝑑𝑑𝑑𝑑
= −𝑳𝑳𝝂𝝂∞ − 𝑳𝑳𝜸𝜸

∞ + 𝑳𝑳𝑫𝑫𝑫𝑫∞ + 𝑳𝑳other heating∞

= cooling by 𝜈𝜈 and 𝛾𝛾 emission  +  heating due to dark matter

• Early cooling is dominated by neutrino emission
• Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 104 K. 
Astrophys.J. 874 (2019) no.2, 175

Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr
100 K after ~ 1 Gyr
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Detecting the Heating

FAST (radio) JWST (NIRCam)

TNS ~1700 K

1 - 2 μm
M. Baryakhtar et al. 
PRL 119, 131801 (2017)
arXiv:1704.01577

Nearby ≲ 50 pc
isolated old NSs

near IR
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High probability of gravitational capture.

DM particles accelerated to 𝒪𝒪 0.5𝑐𝑐

Cross section for efficient trapping 𝒪𝒪 10−45 cm for large DM mass range

Unlike direct detection, not restricted by recoil detection threshold.

Similar sensitivity to SI and SD cross scattering  

Elastic and inelastic scattering cross sections of same order of magnitude.       

no momentum suppression

Neutron Star Heating: Advantages
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Momentum transfer in single 
collision not sufficient for capture 
when 𝑚𝑚𝐷𝐷𝐷𝐷 > 106 GeV

Pauli blocking from degenerate neutrons restricts 
scattering when 𝑚𝑚𝐷𝐷𝐷𝐷 < 1 GeV.  
Need: momentum transfer > neutron Fermi momentum 

NFB, Busoni, Robles, 
arXiv:1807.02840 

Kinetic Heating Sensitivity
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Direct Detection vs Neutron Stars

Projected neutron star heating sensitivity: 
• comparable to direct detection experiments for scalar and vector interactions
• more sensitive than DD for all other interaction types (typically by orders of magnitude.

Operator Coupling Direct 
Detection

Momentum 
suppressed

DD vs NS

D1 SS (𝜒̅𝜒𝜒𝜒)(�𝑞𝑞𝑞𝑞) yq/Λ2 SI  NS or DD

D2 PS 𝜒̅𝜒𝛾𝛾5𝜒𝜒 (�𝑞𝑞𝑞𝑞) yq/Λ2 SI  NS

D3 SP (𝜒̅𝜒𝜒𝜒)(�𝑞𝑞𝛾𝛾5𝑞𝑞) yq/Λ2 SD  NS

D4 PP (𝜒̅𝜒𝛾𝛾5𝜒𝜒)(�𝑞𝑞𝛾𝛾5𝑞𝑞) yq/Λ2 SD  NS

D5 VV (𝜒̅𝜒𝛾𝛾𝜇𝜇𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝑞𝑞) 1/Λ2 SI  NS or DD

D6 VA (𝜒̅𝜒𝛾𝛾𝜇𝜇𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝛾𝛾5𝑞𝑞) 1/Λ2 SI,SD  NS

D7 AV (𝜒̅𝜒𝛾𝛾𝜇𝜇𝛾𝛾5𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝑞𝑞 1/Λ2 SD  NS

D8 AA (𝜒̅𝜒𝛾𝛾𝜇𝜇𝛾𝛾5𝜒𝜒 )(�𝑞𝑞𝛾𝛾𝜇𝜇𝛾𝛾5𝑞𝑞) 1/Λ2 SD  NS
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Neutron star sensitivity - SI scattering

NFB, Busoni, Robles, arXiv:1807.02840 

SI scattering 𝒒𝒒𝟐𝟐 suppressed SD scattering 𝒒𝒒𝟒𝟒 suppressed SD scattering

NS sensitivity comparable 
to direct detection

NS sensitivity greatly surpasses direct detection experiments
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Leptons in Neutron Stars

Beta-decay equilibrium in the core 
determines the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Leptons in Neutron Stars

Beta-decay equilibrium in the core 
determines the composition:

• Degenerate neutrons
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electron and proton abundances

• Small muon component
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Leptons in Neutron Stars
Lepton density of  few % in NS core, lower in crust.
Fermi-momentum ~ constant in core.

crust-core boundary



DM@LHC 2020   – Hamburg (remotely)   – 4 June 2020    – N. Bell, U.Melbourne 15

Neutron Star Equation of State

Composition varies 
according to the 
neutron star EoS

Brussels-Montreal EoS functionals from Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)
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Insensitive to details of NS Equation of State

NFB, Busoni & Robles arXiv:1904.09803 

Electron scattering 

Muon Scattering

Neutron scattering 

Proton scattering 
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Neutron star limits on leptophilic DM

Electron scattering 

Muon scattering 

NFB, Busoni & Robles 
arXiv:1904.09803 
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Leptophilic DM NFB, Busoni & Robles arXiv:1904.09803 

NS sensitivity has 
the potential to 
greatly surpass 
electron-recoil 
direct detection 
experiments.

vector axialvector

pseudoscalar

scalar
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Improved capture calculations
Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:
o Consistent treatment of NS structure

• Radial profiles of EoS dependent parameters, and GR corrections by solving the Tolman-
Oppenheimer-Volkov eqns. 

o Gravitational focusing
• DM trajectories bent toward the NS star

o Fully relativistic (Lorentz invariant) scattering calculation
• Including the fermi momentum of the target particle

o Pauli blocking 
• Suppresses the scattering of low mass dark matter

o Neutron star opacity
• Optical depth

o Multi-scattering effects
• For large DM mass, probability that a collision results in capture is less than 1

NFB, Busoni, Robles & Virgato arXiv:2004.14888 
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NFB, Busoni, Robles & Virgato arXiv:2004.14888 Neutron star opacity
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NFB, Busoni, Robles & Virgato arXiv:2004.14888 Improved capture calculations

Including Pauli blocking, 
multiscattering and 
opacity effects. 
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Dark matter capture in stars  cosmic laboratory to probe DM scattering interactions

• Completely different kinematic regime to direct detection experiments
• Scattering of quasi-relativistic dark matter no velocity or momentum suppressions

• Excellent sensitivity to DM-lepton scattering cross sections, with electron and especially 
muon scattering.

• Neutron Star kinetic heating sensitivity is better than current and forthcoming direct 
detection experiments, for both nuclear-recoil and electron-recoil scattering.

• Capture calculations have recently been refined and improved.

Summary & Conclusions
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