Long-lived particle searches in ATLAS and CMS

Masahiro Morinaga, Waseda University
On behalf of ATLAS and CMS Collaboration

The EAGLE Project
Long-Lived Particle at ATLAS and CMS

• Why Long-lived particle (LLP)?
 • DM should be stable and cold.
 • New particle could be a long-lived.
 • Most of new physics analysis target prompt decays from signal
 • Technical difficulty
 • A lot of uncovered phase space.

• Key technique for LLP: Special reconstruction
 • Large Radius Tracking (LRT): LLP’s impact parameter (d_0) would be large
 • Displaced Vertex (DV): Vertex formed far from Primary Vertex (pp collision)
Long-Lived Particle

- **Small Coupling Case**
 - Small RPV coupling
 - Gravity (into gravitino)

- **Heavy intermediate**
 - 10 TeV squark → gluino
 - 100 TeV higgsino → wino/bino

- **Small ΔM**
 - pure wino LSP (ΔM~160 MeV)

- **Why they become LLP?**
 - Three reasons: coupling, heavy intermediate, small Δmass

- **How can we detect LLP?**
 - Detect LLP itself → Large dE/dx, disappearing track...
 - Detect SM particles from LLP decay → Displaced vertex, displaced late photon...
LLP's View in the Detector

- LLP's view in detector depends on how it produce/decay
- Many unique signatures

Combination of
- Track(s)
- Vertex
- Cluster
- Muon(s)

Background
- Random crossing
- SM LLP
- Fake track/vertex
LLP’s View in the Detector

- Disappearing or kinked tracks
- Emerging jets
- Quasi-stable charged particle
- Trackless, low-EMF jets
- Non-pointing photon
- Multitrack vertices in the muon spectrometer
- Displaced multitrack vertices
- Displaced leptons, lepton-jets
- Multitrack vertices in the muon spectrometer

Combination of
- Track(s)
- Vertex
- Cluster
- Muon(s)

Background
- Random crossing
- SM LLP
- Fake track/vertex

• LLP’s view in detector depends on how it produce/decay
• Many unique signatures
Displaced Vertices with Charged Leptons

- **LLP → ee/μμ/μμ**: simplified RPV SUSY or Z' toy model (model independent)
- Large radius tracking (LRT) is used to identify displaced vertices (DV)
- Muon or photon trigger: photon trigger is used for displaced electron pair

Background:
- Cosmic muon: reduce by selection and check cosmic muon CR

Graph

- ATLAS
- $\sqrt{s} = 13$ TeV, 32.8 fb$^{-1}$
- Cosmic rays control region
- Red bars: All dimuon pairs (scaled)
- Black line: DV matched dimuon pairs

`ΔR_{cos}`
Displaced Vertices with Charged Leptons

- **LLP → ee/μμ/ττ**: simplified RPV SUSY or Z' toy model (model independent)
- Large radius tracking (LRT) is used to identify displaced vertices (DV)
- Muon or photon trigger: photon trigger is used for displaced electron pair

Background:
- Cosmic muon: reduce by selection and check cosmic muon CR
- random crossing tracks: data-driven method event mixing and track flipping.

![Graph showing displaced vertices / 10 mm](image)

ATLAS

- Data / Estimate
- √s = 13 TeV, 32.8 fb⁻¹

- Track flipping

DM@LHC2020/Masahiro Morinaga
Displaced Vertices with Charged Leptons

- **LLP → ee/μμ/eμ** : simplified RPV SUSY or Z' toy model (model independent)
 - Large radius tracking (LRT) is used to identify displaced vertices (DV)
 - Muon or photon trigger: photon trigger is used for displaced electron pair
- **Background**:
 - Cosmic muon: reduce by selection and check cosmic muon CR
 - Random crossing tracks: data-driven method *event mixing* and *track flipping*.
- **Systematics**: LRT(DV): $K_s \rightarrow \pi \pi$ is used
- **Efficiency**: maximum (~40%) around 10-50mm
Displaced Vertices with Charged Leptons

- **LLP → ee/μμ/μμ**: simplified RPV SUSY or Z’ toy model (model independent)
- Large radius tracking (LRT) is used to identify displaced vertices (DV)
- Muon or photon trigger: photon trigger is used for displaced electron pair

Background:
- Cosmic muon: reduce by selection and check cosmic muon CR
- Random crossing tracks: data-driven method **event mixing** and track flipping.

Systematics: LRT (DV): $K_S \rightarrow \pi\pi$ is used

Efficiency: maximum (~40%) around 10-50mm

Results: Expected 0.27 ± 0.17, 0 event observed.
- Model independent: Upper limit 0.09 fb for cross section (95%).
Light Neutral LLP

- **Light neutral LLP**: Benchmark FRVZ model
- **Signature**: ggF Higgs to, 4 fermions(DPJ), missing ET (γ_d is LLP)
- **DPJ**: μDPJ or h(adronic)DPJ, using BDT
- **Signal Region**: two DPJ objects satisfying $\mu-\mu$, $\mu-h$, $h-h$
- **Background**: multi-jets using ABCD
Light Neutral LLP

- **Light neutral LLP**: Benchmark FRVZ model
- **Signature**: ggF Higgs to, 4 fermions(DPJ), missing ET (γ_d is LLP)
- **DPJ**: μDPJ or h(adronic)DPJ, using BDT
- **Signal Region**: two DPJ objects satisfying μ-μ, μ-h, h-h.
- **Background**: multi-jets using ABCD

\[
\begin{align*}
H & \rightarrow 2\gamma_d + X \\
m_H = 125 \text{ GeV} & \quad \sqrt{s} = 13 \text{ TeV} \\
m_{\gamma_d} = 400 \text{ MeV} & \\
\end{align*}
\]

- **μDPJ**: η, φ, z0, timing(MS)
- **μBDT**: 4 inputs variables
Light Neutral LLP

• **Light neutral LLP**: Benchmark FRVZ model
 - Signature: ggF Higgs to, 4 fermions(DPJ), missing ET(γ_d is LLP)
 - **DPJ**: μDPJ or h(adronic)DPJ, using BDT

• **Signal Region**: two DPJ objects satisfying $\mu-\mu$, $\mu-h$, $h-h$

• **Background**: multi-jets using ABCD

• **Results**: No excess in the signal region.
Displaced Jets : Hidden Sector Mediator

• **LLP**: Hidden Sector (HS), mediator scalar s is LLP

• **DV**: MSVx and IDVx

 • MSVx: DV at MS, MS track and chi2

 • IDVx: DV at ID, large radius track and chi2, material veto
Displaced Jets : Hidden Sector Mediator

- **LLP** : Hidden Sector (HS), mediator scalar s is LLP
- **DV** : MSVx and IDVx
 - MSVx : DV at MS, MS track and chi2
 - IDVx : DV at ID, large radius track and chi2, material veto
- **Background** : random crossing fake track \rightarrow ABCD like data-driven estimation
Displaced Jets : Hidden Sector Mediator

- **LLP**: Hidden Sector (HS), mediator scalar \(s \) is LLP
- **DV**: MSVx and IDVx
 - MSVx : DV at MS, MS track and chi2
 - IDVx : DV at ID, large radius track and chi2, material veto
- **Background**: random crossing fake track → ABCD like data-driven estimation
- **Efficiency**: Strongly depends on scalar mass.

Diagram

- Long-lived particle decay \(R \) [mm]
 - \(R \) vs reco. efficiency
 - \(R \) vs Selection efficiency
 - Simulation ATLAS
 - No material veto, \(m_s = [125, 55] \) GeV
 - With material veto, \(m_s = [125, 25] \) GeV
 - \(m_s = [125, 8] \) GeV

Plot

- IDVx reconstruction efficiency
 - Simulation ATLAS
 - ATLAS Simulation
 - Standard and LRT
 - Only standard tracking
 - All vertices

Graph

- IDVx Selection Efficiency
 - ATLAS Simulation
 - \(m_s = [1000, 150] \) GeV

Legend

- Simulation ATLAS
- No material veto
- With material veto

Equations

\[\text{Br}(85:5:8) \]

Additional Information

- **DM@LHC2020/Masahiro Morinaga**
Displaced Jets : Hidden Sector Mediator

- **LLP**: Hidden Sector (HS), mediator scalar s is LLP
- **DV**: MSVx and IDVx
 - MSVx : DV at MS, MS track and chi2
 - IDVx : DV at ID, large radius track and chi2, material veto
- **Background**: random crossing fake track \rightarrow ABCD like data-driven estimation
- **Efficiency**: Strongly depends on scalar mass.
- **Results**: agreed with background only expectation
Displaced Jets

- **LLP**: RPV/GMSB/split SUSY, Hidden Valley, Higgs,
- **GBDT**: 4 input variables
- **RM_Scluster**: #of tracks, L_{xy} significance, κ (sum of track IP significance).

- **Background**: QCD multi-jets,
- **MC prediction with seven CRs and three cross-checks regions.**

Several models

Veto map

Veto efficiency
Displaced Jets

- **LLP**: RPV/GMSB/split SUSY, Hidden Valley, Higgs,
- **GBDT**: 4 input variables
 - R_{MCluster}, #of tracks, L_{xy} significance, κ(sum of track IP significance).
- **Background**: QCD multi-jets,
- MC prediction with seven CRs and three cross-checks regions.

4 inputs for BDT
Displaced Jets

95.9 fb^{-1} (13 TeV)

CMS Preliminary

- Observed events
- Background predictions
 - $m_X = 300 \text{ GeV, } \sigma_X = 3 \text{ mm}$
 - $m_X = 300 \text{ GeV, } \sigma_X = 30 \text{ mm}$
 - $m_X = 300 \text{ GeV, } \sigma_X = 300 \text{ mm}$

signal region

- **LLP**: RPV/GMSB/split SUSY, Hidden Valley, Higgs,
 - GBDT: 4 input variables
 - $R_{\text{MScluster}}$, #of tracks, L_{xy} significance, κ(sum of track IP significance).
- **Background**: QCD multi-jets,
- **MC prediction** with seven CRs and three cross-checks regions.
- **Results**: Agreed with SM expectation

- **GBDT score**

- **Events**
 - $0.1 < g \leq 0.2$
 - $0.2 < g \leq 0.3$
 - $0.3 < g \leq 0.5$
 - $0.5 < g \leq 0.7$
 - $0.7 < g \leq 0.9$
 - $0.9 < g \leq 0.95$
 - $0.95 < g < 0.988$
 - $0.988 < g \leq 1$

- **Observed events**
- **Background predictions**

- CMS Preliminary 132 fb$^{-1}$ (13 TeV)

- **95% CL upper limits**
 - Observed
 - Median expected

- **Theory**
 - Expected = 1 σ_{expected}
 - CMS delayed jets

- **Observed = 1 σ_{observed}**

- **GMSB**: $\tilde{g} \to \tilde{g} \tilde{g}$
 - 95% NNLO approx NNLO exclusion

- **PP**: $pp \to \tilde{g} \tilde{g} \to g\tilde{g}$
 - CMS delayed jets

- **Cross section [fb]**
 - CMS Preliminary 132 fb$^{-1}$ (13 TeV)
 - 3500
 - 3000
 - 2500
 - 2000
 - 1500
 - 1000
 - 10^{-1}
 - 10^{-2}

- **Log$_{10}$ (cr$_0$/mm)**
 - 4
 - 3.5
 - 3
 - 2.5
 - 2.0
 - 1.5
 - 1.0
 - 10^{-1}
Disappearing Track

- **LLP**: chargino is LLP decayed inside of the inner detector.
- If chargino is DM wino/higgsino < 1TeV/3TeV
- **Short track**: # of layer → 4, 5, ≧6, $E_{T\text{miss}} > 120$GeV (trigger)
- **Background**: lepton, spurious tracks
 - Using CR events with probability correction factors.
 - **HEM**: Hadronic calorimeter down for certain period of Run2.

\[
N_{\ell Bo}^{\ell} = \frac{N_{\text{ctrl}}^{\ell}}{\epsilon_{\text{trigger}}} \\
N_{\text{spurious}}^{\ell} = N_{\text{basic}}^{\ell} \cdot \mathcal{G}^{\text{raw spurious}}^{\text{spurious}}
\]

PV

- reconstructed 4 or 5 or more layers
Disappearing Track

- **LLP**: chargino is LLP decayed inside of the inner detector.
- If chargino is DM wino/higgsino < 1 TeV/3 TeV
- Short track: #of layer → 4, 5, ≥ 6, \(E_{\text{miss}} > 120 \text{GeV} \) (trigger)
- **Background**: lepton, spurious tracks
 - Using CR events with probability correction factors.
 - HEM: Hadronic calorimeter down for certain period of Run2
- **Results**: No significant excess → limit
 - Pure wino: Exclude 474 GeV, Higgsino: Exclude 175 GeV.

\[
N_{\text{est}} = \frac{N_{\text{ctrl}}}{c_{\ell}^{\text{trigger}}}
\]

\[
N_{\text{spurious}} = N_{\text{basic}} \cdot \frac{p_{\text{raw}}^{\text{spurious}}}{p_{\text{off}}^{\text{trig}}}
\]

Transfer factor

\(d_0 \) sideband
Disappearing Track

- **LLP**: Chargino is LLP decayed inside of the inner detector.
- If chargino is DM wino/higgsino < 1 TeV/3 TeV
- Short track: # of layer → 4, 5, ≥ 6, $E_T^{miss} > 120$ GeV (trigger)
- **Background**: Lepton, spurious tracks
 - Using CR events with probability correction factors.
 - HEM: Hadronic calorimeter down for certain period of Run 2
- **Results**: No significant excess → limit
 - Pure wino: Exclude 474 GeV, Higgsino: Exclude 175 GeV.

$$N_{est}^{\ell} = \frac{N_{ctrl}^{\ell}}{e^{\ell}_{trigger}}$$
$$N_{est}^{spurious} = N_{basic}^{ctrl} \cdot \zeta^{P_{raw}^{spurious}}$$
LLP Search Deep Neural Network

- **DNN to identify jets from LLP**: split SUSY signal
 - Jet label: b, c, light quark, gluon
 - Training with seven $c\tau$ values
 - Categorize: (#of jets, #of tagged jets) and H_T
- **Background**: MC-based estimation
- **Results**: No significant excess
 - Improve longer lifetime region

CMS Simulation

- **ROC**
 - $\sim 60\%$ efficiency at 1% fake rate
Summary

- Long-live particle search at ATLAS and CMS become important as a dark matter candidate.
- Analysis technique to reconstruct LLP or its products is being mature.
- Machine learning become a key technique in LLP search.
- Lots of results are not updated by Run2 full data (~140/fb), will happen soon :)
“backup”