Casting a GraphNet to catch dark showers

Elias Bernreuther

RWTH Aachen University

based on arXiv:2006.xxxxx

with Thorben Finke, Felix Kahlhoefer, Michael Krämer and Alexander Mück

5 June 2020

Dark showers at the LHC

Production of dark quarks leads to dark shower and hadronisation

 \rightarrow Giovanni Grilli di Cortona's talk

For benchmark model and details see EB et al., 1907.04346

- Large number of dark mesons in an event
- Most escape the detector as *E_T*
- Some decay to visible jets
- \Rightarrow Semi-visible jets

 \Rightarrow Exciting new signatures, but difficult to find

 \Rightarrow Train a neural network to distinguish dark showers from QCD

Dynamic Graph CNN

- Originally from computer vision
- Recently used as jet tagger: ParticleNet

Jets as point clouds

- Every constituent is a point in a high-dimensional feature space
- No ordering

Edge convolution

- For each point construct graph of k nearest neighbours
- Carry out convolution over edges (features of pairs of neighbours)

•
$$x'_i = \frac{1}{k} \sum_{j=1}^k h_{\Theta}(x_i, x_{i_j})$$

with points $x_i \in \mathbb{R}^F$ and edge function $h_{\Theta} : \mathbb{R}^F \times \mathbb{R}^F \to \mathbb{R}^{F'}$

Wang et al., 1801.07829 Qu, Gouskos, 1902.08570

DGCNN performance in comparison to other networks

• Signal: semi-visible jets from dark showers, background: QCD jets

- DGCNN significantly outperforms more conventional architectures (e.g. CNN operating on jet images and LoLa on 4-vectors)
- DGCNN advantage is much larger than in top tagging benchmark

Varying dark sector parameters

- Moderate effect on performance from r_{inv} (average fraction of $\not \in_T$)
- Most influential parameter: dark meson mass

dotted: trained on $m_{\rm meson}=5$ GeV

dashed: trained on mixed sample

- Network learns to reconstruct the dark meson mass
- Training on a mixed sample mitigates model dependence

Applied to monojet analysis

By how much can we improve an analysis with our dark shower tagger?

\Rightarrow Monojet search as example ATLAS, 1711.03301

(sensitive to events with one visible and one invisible dark shower)

- Train on dark showers and dominant background (Z+jets)
- Require at least one jet tagged as dark shower after usual cuts
- \Rightarrow Sensitivity increased by factor \sim 20 (assuming subdominant ttbar bg)

- Strongly interacting dark sectors are a well motivated scenario predicting exciting new LHC signatures
- Difficult to identify with conventional methods: great opportunity for machine learning
- Graph nets are particularly well suited to this task
- Model dependence can be mitigated, e.g. with mixed training
- Increases the sensitivity of searches by a lot even when all other cuts remain the same
- Can reach into parameter space not covered by existing prompt or LLP searches
- So far only supervised training still thinking about unsupervised techniques that work for dark showers and general new physics