Exploring Jet Substructure in Semi-visible jets

Sukanya Sinha and Deepak Kar
(Thanks to Tim Cohen and Joel Doss for useful discussions)
Introduction

- Look at unusual topologies & hidden phase space corners
- Dark hadrons decay **promptly** in a QCD-like fashion partially back to visible sector (**semi-visible jets “SVJ”)**
 - Showering using Pythia hidden valley module

Based on the Paper:
LHC Searches for Dark Sector Showers : Tim Cohen et al [arXiv: 1707.05326]
Hidden Valley: Semi-visible jets idea

Two different dark quark flavours

► Combine to form π^+, π^-, π^0, and ρ^+, ρ^-, ρ^0 (assumed to be produced thrice as much as pions)

► Only ρ^0 is unstable and (promptly) decays to SM quarks: more likely to decay to b pairs due to need for a mass insertion, to make the angular momentum conservation work out

► Other mesons are (collider-)stable \rightarrow invisible

Model Parameters:

1. M_Φ = Mass of Scalar Bi - fundamental (mediator)
2. M_d = Mass of dark hadrons
3. r_{inv} = no. of stable dark hadrons/ no. of hadrons

Choosing $M_\Phi = 1.5$ TeV, $M_d = 10$ GeV for the studies
Aim of the study

- Comparing jet substructure variables to see if SVJ substructure is different from light quark/gluon jets (BG). Do they behave more multi-pronged as opposed to mostly single prong?
- Comparison can be done in p_T bins or in m/p_T bins, picked the former, as there is no resonance.

t-channel makes it more challenging as no resonance peak

Looking at jet p_T; angle between MET & leading/sub-leading jets

Subleading jets tend to align more with MET, which makes it harder to study
Plots from ATLAS to explain how the JSS variables behave

Energy correlation functions:

ECF2: multi-prong has higher values

N-Subjettiness: \(\tau_{21} \): Lower values indicate more 2subjett-like behaviour

Energy correlation double ratios:

C2: higher value has more subjets

Les Houches Angularity: higher value means hard radiations are more separated

Link to paper
Choosing leading pt jets for background, and jets closest to MET for signal

This is in p_T 400-600 bin (most signal), similar trend in p_T 800-1000 bin.

Same message from all plots, signal is more multi-pronged.
Let's see a representative case, which is similar to "darkjets" mentioned in S2:

Study $r_{\text{inv}} = 0$ signal comparison with background, varying HV alphaFSR and p_T^{min}.

Turns out p_T^{min} does not have visible effect.

So only plots having $r_{\text{inv}} = 0$ signal comparison with background, varying alphaFSR are shown.
Study of model dependence

Use some variables to discriminate?

D2 behaves like C2

ECF3 behaves like ECF2

τ_{32} behaves like τ_{21}, but with more prominent differences

Worth noting that alphaFSR=0.1 is closest to BG, probably because that value is closest to the QCD alpha value
Attempt at understanding jet substructure of SVJ

Checks:

- Does decay from intermediate to final dark hadrons change anything?
- How does grooming affect jet substructure?
- What is effect of ISR and extra radiation on jet substructure?

For a detailed look at non-trivial theory systematics on jet substructure observables: See Also, Tim Cohen et al recent paper.
Checks:

- Does decay from intermediate to final dark hadrons change anything?
- How does grooming affect jet substructure?
- What is effect of ISR and extra radiation on jet substructure?
 - \(r_{\text{inv}} = 1, \alpha_{\text{FSR}} = 0.1 \) signal comparison
 - final dark hadrons clustered into jets - by themselves (DH),
 - with other visible hadrons (DH + Vis),
 - with other visible hadrons but no ISR (DH + Vis + no ISR),
 - with other visible hadrons but no extra jets in ME level, no ISR (DH + Vis + noISR + NoJ).

In backup slides
Substructure studies by directly clustering dark hadrons

Plots for $p_T = 400 - 600$ GeV

(similar trend for $p_T = 800 - 1000$ GeV)
Interpretations

- Adding Standard Model particles to clustering changes no. of sub jets massively, mostly > 3 prong.

- Lack of extra jets at ME level makes the signal jet less energetic, so the corresponding substructure pattern is wider.

- Taking off ME extra jets does not change pronginess but makes LHA closer to only dark hadrons scenario.

- ISR qualitatively has same effect as extra jets, but it adds more activity to semi-visible jets compared to ME extra jets, making slightly more multi-pronged. Softer ISR particles spread more, not changing LHA.
Icing on the cake: multiple populations!

\(\tau_{21} \) shows multiple populations (alpha = 0.1)

- Same effect when adding all SM hadrons.
- Absence of ISR does not affect, whereas absence of ME jets makes the 2 prong population weaker.
- Effect was also noticed when alpha values were lowered, and at higher \(p_T \) ranges, for \(r_{inv} = 0 \), as in S8.
- May indicate that smaller alpha values mean less radiation, and create 2-pronged jss, and also high \(p_T \) means more collimated and more 2-pronged.
Semi-visible jets tend to be more multi-pronged compared to light quark/gluon jets(!), leading to certain jet substructure variables having discriminatory power.

Mostly due to presence of only one dark shower module, so far, it is somewhat model dependent.

However, our studies have shown that substructure is created by the interspersing of visible hadrons and ISR + extra jets with dark hadrons.

Conclusions & Next Steps

Coming soon at an arXiv near you!
BACKUP SLIDES
Why we need two extra jets?

Particle level MET plots for 2 scenarios:

1. signal (no extra jets) vs multijet background
2. $r_{inv} = 1$ (with and without extra jets)

2 extra jets required to obtain a proper signal which is visible over the QCD background, unlike the no extra jet case (fig above).

Extra jet multiplicity is due to twisted s-channel diagram contributions even when generating t-channel.

XS also increases on adding the 2 jets, which makes the search more powerful.
Icing on the cake: multiple populations at high pT!

τ_{21} in p_T range of 400 - 600 GeV (top) 800 - 1000 GeV (bottom) shows multiple populations for $\alpha = 0.1$

Indicates possibility of 2-pronged structure (LHS) as well as non 2-pronged structure (RHS)
Decays (shown: τ^{32})

Rather than clustering final DH in different combinations, same were repeated with intermediate DHs (INT), turning their decays off.

No visible difference except a slightly more flattish shape in lower values and slightly less max values for INT ones in τ.

Red: Final dark hadrons clustered
Blue: Intermediate dark hadrons clustered
Green: Final dark hadrons+visible particles clustered
Yellow: Intermediate dark hadrons+visible particles clustered
Trimming (shown: $\tau 21$)

Trimming in general moves C2 to left, τ to the right. This is least pronounced for only DH case, more for DH+Vis and most pronounced for noISR+noextra jets cases.

However, no extra jet case shows the largest shift at higher values of τ, indicating ISR gets more affected by trimming. Less pronounced at C2.

pT spectra does not change, as expected.