Robust cosmological constraints on axion-like particles

Based on *JCAP* 05 (2020) 009 [arXiv: 2002.08370]

Paul Frederik Depta
In collaboration with Marco Hufnagel and Kai Schmidt-Hoberg
4 June 2020
Dark Matter @ LHC 2020
Robust cosmological constraints on axion-like particles | Paul Frederik Depta | 4 June 2020

$\alpha_{\gamma\gamma}$ HB stars

$\alpha_{\gamma\gamma}$ SN1987a

$\alpha_{\gamma\gamma}$ SN1987a ($\phi \rightarrow \gamma\gamma$)

DFSZ

beam dump

$g_{\phi\gamma}$ [1/GeV]

m_{ϕ} [MeV]
Introduction

- \[\mathcal{L}_{\text{ALP}} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m_\phi^2 \phi^2 - \frac{g_{\phi \gamma}}{4} \phi F_{\mu \nu} \tilde{F}^{\mu \nu} \]
- Translates to lifetime \(\tau_\phi = \frac{64 \pi}{m_\phi^3 g_{\phi \gamma}^2} \)
- Impact early Universe cosmology if \(1 \text{ keV} \lesssim m_\phi \lesssim 1 \text{ GeV}, \tau_\phi \ll \text{age of the Universe} \)
- Description via Boltzmann equation
- Simple picture:
 - (Thermal) production via Primakoff process
 - (ALP becoming non-relativistic)
 - Decay into photons
- Constraints complementary to other astrophysical and collider physics probes, in particular also to projected sensitivities of Belle II and SHiP
Impact of ALPs on BBN and the CMB

- In the context of axion-like particles (ALPs) big bang nucleosynthesis (BBN) sensitive to modifications of
 - Hubble rate
 - Time-temperature relation
 - ν-decoupling temperature
 - Baryon-to-photon ratio η
 - Input value from cosmic microwave background (CMB) observations, best-fit value sensitive to effective number of νs, i.e. N_{eff}
- CMB sensitive to N_{eff}
Impact of ALPs on BBN and the CMB

Constraints in the vanilla case
Robustness of constraints

Effect of additional radiation ΔN_{eff} and ν chemical potential ξ_{ν_e}
Robustness of constraints

Complementarity to projections of Belle II and SHiP

Robust cosmological constraints on axion-like particles | Paul Frederik Depta | 4 June 2020
Robustness of constraints

Effect of reheating temperature T_R

$T_R = 10^9$ MeV

$T_R = 10^6$ MeV

$T_R = 10^3$ MeV

$T_R = 10^1$ MeV

$\frac{\tau}{s}$ vs m_ϕ [MeV]
Summary

• BBN and CMB can put constraints on ALPs with masses in keV – GeV range
• Complementary to other astrophysical and particle physics probes, in particular also to projected sensitivities of Belle II and SHiP
• Constraints can be weakened by e.g.
 • additional radiation
 • neutrino chemical potential
 • low reheating temperature
• Still, very relevant and robust cosmological constraints remain
Thank you
Backup Slides
Production and decay in the early Universe

- Description via $\frac{\partial f_\phi}{\partial t} - Hp \frac{\partial f_\phi}{\partial p} = C \times \left(f^\text{eq}_\phi - f_\phi \right)$

- Contributions to collision term $C = C_q + C_\gamma$ from
 - Primakoff process C_q, in equilibrium for $T > T_{f_0}$
 - (inverse) decay C_γ, in equilibrium for $T < T_{re}$

- Physics depends on the order of
 - Primakoff freeze-out
 - ALP becoming non-relativistic
 - (re-)equilibration via (inverse) decay
Production and decay in the early Universe

\[T_{\phi} = 1 \text{ MeV} \]
\[T_{\phi} = 10 \text{ MeV} \]
\[T_{\phi} = 1 \text{ GeV} \]
\[T_{\phi} = 1 \text{ TeV} \]
\[T_{\phi} = 1 \text{ PeV} \]
\[T_{\phi} = 1 \text{ EeV} \]

\[T_{\text{re}} = 0 \]
\[T_{\text{re}} = 1 \text{ MeV} \]
\[T_{\text{re}} = 10 \text{ MeV} \]

\[\Omega_X(t) \ll \Omega_0 \]

\[\rho_X(t) / \rho_0 \times R(t)^4 \]

\[m = 10^{-2} \text{ MeV} \]
\[\tau_\phi = 10^4 \text{ s} \]

\[\rightarrow \text{ BBN} \rightarrow \]

Robustness of constraints

- Effect of a low reheating temperature T_R:
 - In principle $10 \, \text{MeV} \lesssim T_R \lesssim 10^{16} \, \text{GeV}$
 - If $T_R \lesssim T_{fo}$ one only has 'freeze-in' contribution to ϕ abundance, no equilibrium in early Universe

- Effect of additional radiation, parametrized as ΔN_{eff}:
 - Decay of ALPs after ν-decoupling reduces N_{eff}, this can be compensated for

- Effect of non-vanishing neutrino chemical potential $\xi_{\nu_e} = \mu_{\nu_e} / T_\nu$:
 - Gives contribution to ΔN_{eff}, which we vary independently
 - Influences neutron-to-proton conversion via weak interaction
 \Rightarrow neutron-to-proton ratio in equilibrium $n_n / n_p \propto \exp(-\xi_{\nu_e})$
 \Rightarrow smaller values for ^4He and D abundances for smaller neutron densities
More general coupling structures

- In general constraints expected to be similar if τ_ϕ is interpreted as total lifetime
- Depending on region in parameter space constraints might get weaker or stronger, e.g. if:
 - freeze-out happens at smaller temperature if ϕ becomes non-rel. before decay \Rightarrow weaker constraint
 - additional final states, hadro-dissociation possible \Rightarrow possibly stronger constraints