\boldsymbol{u}^{b}

The Infrared Structure of QCD Scattering Amplitudes

Thomas Becher
University of Bern

January 21, 2020

Outline

- structure of infrared singularities of massless four-loop amplitudes TB, Neubert, 1908.11379

Outline

- Infrared singularities and low-energy effective field theory
- Factorization constraints
- Renormalization and resummation of large logarithms in cross sections
- structure of infrared singularities of massless four-loop amplitudes TB, Neubert, 1908.11379

Outline

- Infrared singularities and low-energy effective field theory
- Factorization constraints
- Renormalization and resummation of large logarithms in cross sections
- structure of infrared singularities of massless four-loop amplitudes TB, Neubert, 1908.11379
- Application: resummation at N3LL
- Event shapes, transverse momentum spectra, ...

Infrared singularities

Scattering amplitudes in theories with massless particles, such as QED or QCD suffer from infrared divergences.

- Exclusive cross sections are unphysical, need to allow for soft and collinear radiation!

A nuisance for cross section calculations.

- Regularize scattering amplitudes and phasespace integrals.
- Isolate and cancel divergences before obtaining numerical predictions.

Textbook material?

```
Lecture Notes in Physics 896
Thomas Becher Alessandro Broggio Andrea Ferroglia
Introduction to Soft-Collinear Effective Theory
```

Series of papers on IR structure of amplitudes about years ago TB, Neubert '09, Gardi, Magnea '09, ... (see SCET book from '15 for a review) but several open questions remained:

- Dipole conjecture, Casimir scaling of γ cusp, non-abelian exponentiation for n legs

These have been answered in the meantime!

Example: form factor integral

$$
p^{2}=l^{2}=m^{2}=0
$$

$$
Q^{2}=(p-l)^{2}
$$

$$
\boldsymbol{T}^{a} \boldsymbol{T}^{a}=C_{F}
$$

$$
F\left(Q^{2}\right)=1+\frac{\alpha_{s}(\mu)}{4 \pi} C_{F}\left(-\frac{2}{\varepsilon^{2}}-\frac{3}{\varepsilon}+\frac{\pi^{2}}{6}-8+\mathcal{O}(\varepsilon)\right)\left(\frac{Q^{2}}{\mu^{2}}\right)^{-\varepsilon}
$$

Use dimensional regularization $d=4-2 \varepsilon$

- Two divergent integrations: energy and angle. Soft and collinear divergences.
- Massive case: only single, soft divergence.

Form factor at 4 loops

Interesting color structures!

$$
d_{R}^{a_{1} \ldots a_{n}}=\operatorname{Tr}_{R}\left(\boldsymbol{T}^{a_{1}} \ldots \boldsymbol{T}^{a_{n}}\right)_{+}
$$

\rightarrow higher Casimir invariants.

Two powers of $1 / \varepsilon$ per loop. At four loops

$$
\Delta F\left(Q^{2}\right)=\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{4}\left[\frac{c_{8}}{\epsilon^{8}}+\frac{c_{7}}{\epsilon^{7}}+\ldots \frac{c_{2}}{\epsilon^{2}}+\frac{c_{1}}{\epsilon}+c_{0}\right]\left(\frac{Q^{2}}{\mu^{2}}\right)^{4 \epsilon}
$$

The analytical calculation of the coefficient c_{2} of the $1 / \varepsilon^{2}$ pole ("cusp anomalous dimension") was finished very recently: Henn, Korchemsky and Mistlberger 1911.10174. Numerical result Moch, Ruijl, Ueda, Vermaseren and Vogt '18 and many color structures were known earlier.

Color-space formalism

- Represent amplitudes as vectors in color space:

$$
\left|c_{1}, c_{2}, \ldots, c_{n}\right\rangle
$$

Catani, Seymour 1996

- Color generator for $i^{\text {th }}$ parton $T_{i}^{a}\left|c_{1}, c_{2}, \ldots, c_{n}\right\rangle$ acts like a matrix:
- t^{a} for quarks, fabc for gluons
- product $\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}=\sum_{a} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{a} \quad$ (commutative)
- charge conservation $\sum_{i} T_{i}^{a}=0$ implies:

Catani's two-loop formula '98

- Specifies IR singularities of dimensionally regularized nparton amplitudes at two loops:

$$
\begin{aligned}
& {\left[1-\frac{\alpha_{s}}{2 \pi} \boldsymbol{I}^{(1)}(\epsilon)-\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \boldsymbol{I}^{(2)}(\epsilon)+\ldots\right]\left|\mathcal{M}_{n}(\epsilon,\{\underline{p}\})\right\rangle=\text { finite }} \\
& \text { with }
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{I}^{(1)}(\epsilon)= & \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{i}\left(\frac{1}{\epsilon^{2}}+\frac{g_{i}}{\boldsymbol{T}_{i}^{2}} \frac{1}{\epsilon}\right) \sum_{j \neq i} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2}\left(\frac{\mu^{2}}{-s_{i j}}\right)^{\epsilon} \\
\boldsymbol{I}^{(2)}(\epsilon)= & \frac{e^{-\epsilon \gamma_{E}} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(K+\frac{\beta_{0}}{2 \epsilon}\right) \boldsymbol{I}^{(1)}(2 \epsilon) \\
& \left.-\frac{1}{2} \boldsymbol{I}^{(1)}(\epsilon)\left(\boldsymbol{I}^{(1)}(\epsilon)+\frac{\beta_{0}}{\epsilon}\right)+\boldsymbol{H}_{\text {R.S. }}^{(2)}(\epsilon)<p_{j}\right)^{2} \text { unspecified }
\end{aligned}
$$

- Later derivation using factorization properties and IR evolution equation for form factor

Misconception

Conventional thinking is that $U V$ and $I R$ divergences are of totally different nature:

- UV divergences are absorbed into renormalization of parameters of theory; structure constrained by $R G$ equations
- IR divergences arise in unphysical calculations; cancel between virtual corrections and real emissions

In fact, IR divergences can be mapped onto UV divergences of operators in effective field theory!

High-energy perspective: Λ is infrared regulator

Low-energy perspective: Λ is ultraviolet regulator

- Effective Field Theory (EFT)
- Renormalization, RG evolution

Physics example: DIS

$$
e^{-}+p \rightarrow e^{-}+X
$$

One-to-one correspondence between UV divergences in PDFs and IR-div's in H_{i} !

Unphysical example: off-shell form factor

$\Lambda_{s}^{2}=\frac{P^{2} L^{2}}{Q^{2}}$
$\lambda^{2} \sim \frac{P^{2}}{Q^{2}} \sim \frac{L^{2}}{Q^{2}}$

$$
I \equiv I_{h}+I_{c}+I_{c}+I_{s}=\frac{1}{Q^{2}}\left(\ln \frac{Q^{2}}{L^{2}} \ln \frac{Q^{2}}{P^{2}}+\frac{\pi^{2}}{3}+\mathcal{O}(\lambda)\right) .
$$

- Cancellations of divergences implies remarkable relations among H, J and S
- Factorization can be obtained in Soft-Collinear Effective Theory (SCET)
- Soft function is given by Wilson line matrix element

[^0]
Soft-collinear factorization: n jet case

Jet functions $J_{i}=J_{i}\left(p_{i}{ }^{2}\right)$

Factorization

Off-shell Green’s function factorize as

Soft function \boldsymbol{S} and on-shell amplitude \mathcal{M} depend on colors of all particles!

Factorization

Off-shell Green’s function factorize as

Soft function \boldsymbol{S} and on-shell amplitude \mathcal{M} depend on colors of all particles!

Renormalization

Soft and jet functions are operators in SCET. Renormalize:

$$
\boldsymbol{S}(\{\underline{\beta}\}, \mu) \prod_{i} J\left(L_{i}^{2}, \mu\right) \mid \mathcal{M}(\{\underline{s}\}, \mu\rangle=\text { finite }
$$

Renormalized, finite amplitude

$$
\left|\mathcal{M}_{n}(\{\underline{s}\}, \mu)\right\rangle=\lim _{\epsilon \rightarrow 0} Z^{-1}(\epsilon,\{\underline{s}\}, \mu)\left|\mathcal{M}_{n}(\epsilon,\{\underline{s}\})\right\rangle
$$

TB, Neubert ‘09
This renormalized amplitude defines a finite S matrix for massless theories. Corresponds to subtracting asymptotic soft+collinear int's.

Renormalization

Renormalization Group (RG) equation

$$
\frac{d}{d \ln \mu}\left|\mathcal{M}_{n}(\{\underline{s}\}, \mu)\right\rangle=\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)\left|\mathcal{M}_{n}(\{\underline{p}\}, \mu)\right\rangle
$$

Anomalous dimension $\boldsymbol{\Gamma}$ determines IR singularities. Independence of μ imposes constraint

$$
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)=\boldsymbol{\Gamma}_{s}(\{\underline{\beta}\}, \mu)+\sum_{i=1}^{n} \Gamma_{c}^{i}\left(L_{i}, \mu\right) \mathbf{1},
$$

Note:
TB, Neubert '09; Gardi, Magnea ‘09

- $\boldsymbol{\Gamma}_{x}$ contains logarithms of associated scales
- $\boldsymbol{\Gamma}$ and $\boldsymbol{\Gamma}_{s}$ are matrices in color space

Dipole form

The following form is consistent with factorization

$$
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)=\sum_{(i, j)} \frac{\boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{a}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \mathbf{1}
$$

Using color conservation

$$
\sum_{j} \boldsymbol{T}_{j}^{a}=0 \rightarrow \sum_{(i j)} T_{i}^{a} T_{j}^{a}=-\sum_{i} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{a}=-\sum_{i} C_{i}
$$

one can rewrite the hard logarithms as soft+jet using

$$
\beta_{i j}=\ln \frac{\left(-s_{i j}\right) \mu^{2}}{\left(-p_{i}^{2}\right)\left(-p_{j}^{2}\right)}=L_{i}+L_{j}-\ln \frac{\mu^{2}}{-s_{i j}}
$$

Up to 2 loops above dipole form is correct. IR singularities agree with Catani '98 and gives $H^{(2)}{ }^{\mathrm{RS}}$.

Additional terms beyond 2 loops?

1.) Extra terms must be the same when expressed in $\operatorname{In}\left(s_{i j}\right)$ or $\beta_{i j}$ to be compatible with factorization.
\rightarrow functions of conformal cross ratios

$$
\beta_{i j k l}=\beta_{i j}+\beta_{k l}-\beta_{i k}-\beta_{j l}=\ln \frac{\left(-s_{i j}\right)\left(-s_{k l}\right)}{\left(-s_{i k}\right)\left(-s_{j l}\right)}
$$

independent of collinear scales.
Gardi, Magnea ‘09
2.) Non-abelian exponentiation: only connected color structures.

Non-abelian exponentiation

In massive QED, the soft function exponentiates

$$
S=\exp (\widetilde{S})=\exp \left(\frac{\alpha}{4 \pi} S^{(1)}\right)
$$

In QCD, simple exponentiation does not hold, but only connected webs contribute to the anomalous dimension. (2 legs: Gatheral '83, Frenkel and Taylor '84. n legs: Gardi, Smillie and White '11, '13)

Connected webs up to 4 loops

Show that we only need color connected webs that are symmetrized in their attachments to legs $i, j, k \ldots$

Replica trick

Stat. phys. see Mezard, Parisi, Vorasoro '87; Wilson lines: Laenen et al. '08 Gardi et al. '10
Compute color structure of the soft exponent

$$
\widetilde{S}=\ln S=\lim _{N \rightarrow 0} \frac{S^{N}-1}{N}
$$

by working with N copies of QCD and extracting the terms which scale as the first power of N. after replica ordering.

$$
\begin{array}{lr}
I=J: & N F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b}, \\
I<J: & \frac{N(N-1)}{2} F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b}, \\
I>J: & \frac{N(N-1)}{2} F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{b} \boldsymbol{T}_{i}^{a} .
\end{array}
$$

Replika ordering along Wilson line!

Replica trick

Proof that only connected structures arise: Gardi, Smillie and White '13, see also Vladimirov '14, '15
Compute color structure of the soft exponent

$$
\widetilde{S}=\ln S=\lim _{N \rightarrow 0} \frac{S^{N}-1}{N}
$$

by working with N copies of QCD and extracting the terms which scale as the first power of N. after replica ordering.
coefficient of N^{1}

$$
\begin{array}{lr}
I=J: & F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b} \\
I<J: & -\frac{1}{2} F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b} \\
I>J: & -\frac{1}{2} F \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{b} \boldsymbol{T}_{i}^{a} .
\end{array}
$$

$$
\widetilde{D}=\frac{1}{2} F \boldsymbol{C}^{a} \boldsymbol{D}^{b}\left[\boldsymbol{T}_{i}^{a}, \boldsymbol{T}_{i}^{b}\right]=\frac{i}{2} F f^{a b c} \boldsymbol{C}^{a} \boldsymbol{D}^{b} \boldsymbol{T}_{i}^{c}
$$

Symmetrization of lines

We want to symmetrize the attachments, e.g.
$T_{i j k l}=f^{a d e} f^{b b e} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d} \longrightarrow \mathcal{T}_{i j k l}=f^{a d e} f^{b c e}\left(\boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d}\right)_{+}$
Can eliminate antisymmetric parts using group identity $\left[\boldsymbol{T}_{i}^{a}, \boldsymbol{T}_{i}^{b}\right]=i f^{a b c} \boldsymbol{T}_{i}^{c}$. Leads to identities

$$
\begin{array}{lrr}
T_{i i j k}=-T_{i j i k}=-T_{j i k i}=T_{j k i i}=\mathcal{T}_{i i j k}-\frac{C_{A}}{4} \mathcal{T}_{i j k}, & T_{i j k i}=T_{j i i k}=\frac{C_{A}}{2} \mathcal{T}_{i j k} \\
T_{i i j j}=-T_{i j i j}=\mathcal{T}_{i i j j}+\frac{C_{A}^{2}}{8} \mathcal{D}_{i j}, & T_{i j j i}=-\frac{C_{A}^{2}}{4} \mathcal{D}_{i j}, & T_{i i i i}=\frac{C_{A}^{2}}{4} C_{R_{i}} \mathbf{1} \\
T_{i i i j}=T_{j i i i}=\frac{C_{A}^{2}}{4} \mathcal{D}_{i j}, & T_{i i j i}=-T_{i j i i}=0 &
\end{array}
$$

Construction of $\boldsymbol{\Gamma}$

- Write down all possible terms with connected webs, attaching to different numbers of legs.
- Coefficient functions are functions of cusp logs or conformal cross ratios
- Two independent cross ratios for 4 legs
- Five independent conformal cross ratios
- Cusp terms must obey soft-collinear factorization constraint!
- Later: additional constraints on coefficient functions from collinear limit.

4-loop anomalous dimension

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{a}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \mathbf{1} \\
& +f\left(\alpha_{s}\right) \sum_{(i, j, k)} \mathcal{T}_{i i j k}+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l} F\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{R} g^{R}\left(\alpha_{s}\right)\left[\sum_{(i, j)}\left(\mathcal{D}_{i i j j}^{R}+2 \mathcal{D}_{i i i j}^{R}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{(i, j, k)} \mathcal{D}_{i j k k}^{R} \ln \frac{\mu^{2}}{-s_{i j}}\right] \\
& +\sum_{R} \sum_{(i, j, k, l)} \mathcal{D}_{i j k l}^{R} G^{R}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right)+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l i} H_{1}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{(i, j, k, l, m)} \mathcal{T}_{i j k l m} H_{2}\left(\beta_{i j k l}, \beta_{i j m k}, \beta_{i k m j}, \beta_{j i m l}, \beta_{j l m i} ; \alpha_{s}\right)+\mathcal{O}\left(\alpha_{s}^{5}\right) .
\end{aligned}
$$

Simplified compared to TB Neubert '09, Ahrens, Neubert and Vernazza '12. Earlier papers concluded that higher Casimir cusp terms were excluded by factorization in collinear limit - true individually, but certain linear combinations are allowed!

Ingredients

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \mathbf{1} \\
& +f\left(\alpha_{s}\right) \sum_{(i, j, k)} \mathcal{T}_{i i j k}+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l} F\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{R} g^{R}\left(\alpha_{s}\right)\left[\sum_{(i, j)}\left(\mathcal{D}_{i i j j}^{R}+2 \mathcal{D}_{i i i j}^{R}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{(i, j, k)} \mathcal{D}_{i j k k}^{R} \ln \frac{\mu^{2}}{-s_{i j}}\right] \\
& +\sum_{R} \sum_{(i, j, k, l)} \mathcal{D}_{i j k l}^{R} G^{R}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right)+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l i} H_{1}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{(i, j, k, l, m)} \mathcal{T}_{i j k l m} H_{2}\left(\beta_{i j k l}, \beta_{i j m k}, \beta_{i k m j}, \beta_{j i m l}, \beta_{j l m i} ; \alpha_{s}\right)+\mathcal{O}\left(\alpha_{s}^{5}\right)
\end{aligned}
$$

Henn, Smirnov, Smirnov, Steinhauser '16, Henn, Smirnov, Smirnov, Steinhauser, Lee '16, Davies, Vogt, B. Ruijl, T. Ueda and Vermaseren '16; Moch, Ruijl, Ueda, Vermaseren and Vogt '17 '18; Grozin '18; Lee, Smirnov, Smirnov and
known to 4 loops Steinhauser '17 '19; Henn, Peraro, Stahlhofen and Wasser '19, von Manteuffel and Schabinger '19; Brüser, Grozin, Henn and Stahlhofen '19, Henn, Korchemsky and Mistlberger 19
known to 3 loops f, F: Almelid, Duhr and Gardi '16
unknown, 4 loops
Vladimirov '17 claims only even structures should arise: H_{l} and H_{2} zero?

Three-loop coefficients

Computed by Almelid, Duhr, Gardi '16. Can also be bootstrapped Almelid, Duhr, Gardi, McLeod, White '17

$$
\begin{gathered}
F\left(x_{1}, x_{2} ; \alpha_{s}\right)=2 \mathcal{F}\left(e^{x_{1}}, e^{x_{2}}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right), \\
f\left(\alpha_{s}\right)=16\left(\zeta_{5}+2 \zeta_{2} \zeta_{3}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right) \\
\mathcal{F}(x, y)=\mathcal{L}(1-z)-\mathcal{L}(z) \quad z \bar{z}=x \quad(1-z)(1-\bar{z})=y \\
\mathcal{L}(z)=\mathcal{L}_{10101}(z)+2 \zeta_{2}\left[\mathcal{L}_{001}(z)+\mathcal{L}_{100}(z)\right]
\end{gathered}
$$

Brown's single-valued harmonic polylogarithms

Four-loop cusp terms

- Dipole four-loop coefficient

$$
\begin{aligned}
\gamma_{3}^{\text {cusp }}= & C_{A}^{3}\left(-16 \zeta_{3}^{2}-\frac{176 \pi^{2} \zeta_{3}}{9}+\frac{20944 \zeta_{3}}{27}-\frac{3608 \zeta_{5}}{9}-\frac{2504 \pi^{6}}{2835}+\frac{902 \pi^{4}}{45}-\frac{44200 \pi^{2}}{243}+\frac{84278}{81}\right) \\
& +n_{f} T_{F}\left[C_{A}^{2}\left(\frac{448 \pi^{2} \zeta_{3}}{9}-\frac{46208 \zeta_{3}}{27}+\frac{4192 \zeta_{5}}{9}-\frac{176 \pi^{4}}{135}+\frac{20320 \pi^{2}}{243}-\frac{48274}{81}\right)\right. \\
& \left.+C_{A} C_{F}\left(-\frac{128}{3} \pi^{2} \zeta_{3}+\frac{7424 \zeta_{3}}{9}+320 \zeta_{5}-\frac{176 \pi^{4}}{45}+\frac{440 \pi^{2}}{9}-\frac{68132}{81}\right)+\left(\frac{1184 \zeta_{3}}{3}-640 \zeta_{5}+\frac{1144}{9}\right) C_{F}^{2}\right] \\
& +n_{f}^{2} T_{F}^{2}\left[C_{A}\left(\frac{8960 \zeta_{3}}{27}-\frac{224 \pi^{4}}{135}-\frac{1216 \pi^{2}}{243}+\frac{3692}{81}\right)+C_{F}\left(-\frac{2560 \zeta_{3}}{9}+\frac{64 \pi^{4}}{45}+\frac{9568}{81}\right)\right]+\left(\frac{512 \zeta_{3}}{27}-\frac{256}{81}\right) n_{f}^{3} T_{F}^{3}
\end{aligned}
$$

- Higher casimir terms

$$
\begin{aligned}
& g^{F}\left(\alpha_{s}\right)=T_{F} n_{f}\left(\frac{128 \pi^{2}}{3}-\frac{256 \zeta_{3}}{3}-\frac{1280 \zeta_{5}}{3}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{4}+\mathcal{O}\left(\alpha_{s}^{5}\right) \\
& g^{A}\left(\alpha_{s}\right)=\left(-\frac{32 \pi^{2}}{3}+\frac{64 \zeta_{3}}{3}+\frac{1760 \zeta_{5}}{3}-\frac{496 \pi^{6}}{945}-192 \zeta_{3}^{2}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{4}+\mathcal{O}\left(\alpha_{s}^{5}\right)
\end{aligned}
$$

Henn, Smirnov, Smirnov, Steinhauser '16, Henn, Smirnov, Smirnov, Steinhauser, Lee '16, Davies, Vogt, B. Ruijl, T. Ueda and Vermaseren '16; Moch, Ruijl, Ueda, Vermaseren and Vogt '17 '18; Grozin '18; Lee, Smirnov, Smirnov and Steinhauser '17 '19; Henn, Peraro, Stahlhofen and Wasser '19, von Manteuffel and Schabinger '19; Brüser, Grozin, Henn and Stahlhofen '19, Henn, Korchemsky and Mistlberger '19; Huber, Manteuffel, Panzer, Schabinger, Yang '19

Ingreolents

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \mathbf{1} \\
& +f\left(\alpha_{s}\right) \sum_{(i, j, k)} \mathcal{T}_{i i j k}+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l} F\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{R} g^{R}\left(\alpha_{s}\right)\left[\sum_{(i, j)}\left(\mathcal{D}_{i i j j}^{R}+2 \mathcal{D}_{i i i j}^{R}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{(i, j, k)} \mathcal{D}_{i j k k}^{R} \ln \frac{\mu^{2}}{-s_{i j}}\right] \\
& +\sum_{R} \sum_{(i, j, k, l)} \mathcal{D}_{i j k l}^{R} G^{R}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right)+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l i} H_{1}\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\sum_{(i, j, k, l, m)} \mathcal{T}_{i j k l m} H_{2}\left(\beta_{i j k l}, \beta_{i j m k}, \beta_{i k m j}, \beta_{j i m l}, \beta_{j l m i} ; \alpha_{s}\right)+\mathcal{O}\left(\alpha_{s}^{5}\right)
\end{aligned}
$$

- The full three-loop result is known
- IR singularities of all 3-loop amplitudes are known
- All logarithmic pieces are known to four loops
- All IR singularities at 4-loops, except $1 / \varepsilon$ are known
- Resummation to N3LL for n-jet processes

Consistency with collinear limits

- When two partons become collinear, an n-point amplitude M_{n} reduces to an ($n-1$)-parton amplitude times a splitting function: Berends, Giele '89; Mangano, Parke '91

Kosower '99; Catani, de Florian, Rodrigo '03
$\left|\mathcal{M}_{n}\left(\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}\right)\right\rangle=\mathbf{S p}\left(\left\{p_{1}, p_{2}\right\}\right)\left|\mathcal{M}_{n-1}\left(\left\{P, p_{3}, \ldots, p_{n}\right\}\right)\right\rangle+\ldots$

$$
\boldsymbol{\Gamma}_{\mathrm{Sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right)=\boldsymbol{\Gamma}\left(\left\{p_{1}, \ldots, p_{n}\right\}, \mu\right)-\left.\boldsymbol{\Gamma}\left(\left\{P, p_{3} \ldots, p_{n}\right\}, \mu\right)\right|_{T_{P} \rightarrow \boldsymbol{T}_{1}+\boldsymbol{T}_{2}}
$$

TB, Neubert ‘09

- $\boldsymbol{\Gamma}_{\mathrm{sp}}$ must be independent of momenta and colors of partons 3, ..., n

Consistency with collinear limits

- The fact that $\boldsymbol{\Gamma}_{\mathrm{sp}}$ must be independent of the colors and momenta of the remaining particles imposes strong constraint on $\boldsymbol{\Gamma}$.
- '09, '12 papers concluded that the coefficients of the higher-multiplicity terms should vanish in the collinear limit.
- Deriving the 3-loop result Almelid, Duhr and Gardi ‘16 realized that this is not true: different terms can conspire in the limit to be compatible!

$$
\lim _{\omega \rightarrow-\infty} F\left(\omega, 0 ; \alpha_{s}\right)=\frac{f\left(\alpha_{s}\right)}{2}
$$

- Similarly, the higher Casimir coefficients must obey

$$
\lim _{\omega \rightarrow-\infty} G^{R}\left(\omega, 0 ; \alpha_{s}\right)=-\frac{g^{R}\left(\alpha_{s}\right)}{6} \omega
$$

Result for $\boldsymbol{\Gamma}_{\mathrm{sp}}$

Evaluating *

$$
\boldsymbol{\Gamma}_{\mathrm{Sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right)=\boldsymbol{\Gamma}\left(\left\{p_{1}, \ldots, p_{n}\right\}, \mu\right)-\left.\boldsymbol{\Gamma}\left(\left\{P, p_{3} \ldots, p_{n}\right\}, \mu\right)\right|_{\boldsymbol{T}_{P} \rightarrow \boldsymbol{T}_{1}+\boldsymbol{T}_{2}}
$$

in the collinear limit, one obtains

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{\mathrm{Sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right) \\
& = \\
& =\left\{\gamma_{\text {cusp }}\left(\alpha_{s}\right) \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2}+\sum_{R} 2 g^{R}\left(\alpha_{s}\right)\left[3 \mathcal{D}_{1122}^{R}+2\left(\mathcal{D}_{1112}^{R}+\mathcal{D}_{1222}^{R}\right)\right]\right\}\left[\ln \frac{\mu^{2}}{-s_{12}}+\ln z(1-z)\right] \\
& \quad+\gamma_{\text {cusp }}\left(\alpha_{s}\right)\left[C_{R_{1}} \ln z+C_{R_{2}} \ln (1-z)\right]+\gamma^{1}\left(\alpha_{s}\right)+\gamma^{2}\left(\alpha_{s}\right)-\gamma^{P}\left(\alpha_{s}\right) \\
& \\
& \quad-6 f\left(\alpha_{s}\right)\left(\mathcal{T}_{1122}+\frac{C_{A}^{2}}{8} \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2}\right)+\sum 2 g^{R}\left(\alpha_{s}\right)\left[\mathcal{D}_{1111}^{R} \ln z+\mathcal{D}_{2222}^{R} \ln (1-z)\right]+\mathcal{O}\left(\alpha_{s}^{5}\right) .
\end{aligned}
$$

Log terms known to 4 loops! (f, γ^{i} only to 3 loops)

* a painful exercise in color algebra!!

Does it work?

(g)

(i)

Yes! Recent computation of 3-loop four-gluon amplitude in pure YM theory verified that IR singularities agree with general result. Jin, Luo '19

Precision measurements at the LHC

Sub-percent accuracy over large range of energies and many orders of cross section!

A huge challenge for theory!

We have derived our factorization formula using offshell Green's functions, but the factorization

$$
d \sigma=\operatorname{tr}\left[\boldsymbol{H}_{n} \cdot \prod_{i=1}^{n} J \otimes \boldsymbol{S}_{n}\right]
$$

arises for many physical cross sections. J and \boldsymbol{S} are observable dependent, but H is square of on-shell amplitudes.

$e^{+} e^{-} \rightarrow 2$ jets
DIS
Z,W,H production

EW boson production at small q_{T}

RG can be used to resum large
$m_{p} \quad$ logarithms $\alpha_{s^{n}} \ln ^{\mathrm{m}}\left(q_{T} / Q\right)$.

Ingredients for resummation

Log. approx.	$\gamma_{\text {cusp }}$	γ^{i}	H, J, S
LL	1-loop	tree-level	tree-level
NLL	2-loop	1-loop	tree-level
NNLL	3-loop	2-loop	1-loop
NNNLL	4-loop	3-loop	2-loop

- NNNLL has parametrically the same accuracy as NNLO fixed order!
- NNNLL resummations have been performed in the past, but were missing 4-loop $\gamma_{\text {cusp }}$.
- now in place, also for n-jet processes

Transverse momentum spectrum

CuTe
TB, Neubert,Wilhelm ‘12,

+ Lübbert, '16
- At NNNLL, one reaches an accuracy of a few per cent
- 4-loop cusp has numerically only very small effect
- At higher q_{T} one matches to fixed-order result.
- Here: NNLO $=O\left(\alpha_{s}{ }^{2}\right)$, but $\mathrm{O}\left(\alpha_{s}{ }^{3}\right)$ is known.
- CuTe only produces inclusive spectrum.

CuTeR

Have implemented q_{T} resummation in an event-based framework TB, Hager 1904.08325.

- Reweight tree-level event files from MG5_aMC@NLO
- Arbitrary (quark-induced) electroweak boson processes ($\mathrm{W}, \mathrm{Z}, \mathrm{WZ}, \mathrm{ZZ}, \ldots$) at NNLL + O(a_{s})
- Can impose experimental cuts on leptonic final states and compute related variables such as ϕ^{*}

State of the art is now $\mathrm{N}^{3} \mathrm{LL}+\mathrm{O}\left(\alpha_{s}{ }^{3}\right)$ (here called NNLO) matching

- W, Z, H using RadlSH Bizon, Chen, Gehrmann-De Ridder, Glover, Huss, Monni, Re, Rottoli, Torrielli Walker '18 '19
- H using SCET Chen, Gehrmann, Glover, Alexander Huss, Li, Neill, Schulze, Stewart, Zhu '18

Ratio of Z and W spectrum

W-spectrum is important for Mw_{w} measurement. Analysis needs extremely precise predictions

- Experiments use measured Z spectrum to tune Pythia
- Pythia is then used to predict W/Z ratio

A better understanding of the uncertainties would be important

- Ongoing effort to compare and benchmark results of different resummation codes.

Towards NNNNLL

By now even some ingredients for resummation beyond N3LL have become available

- 3-loop dijet hard functions Baikov, Chetyrkin, Smirnov, Smirnov Steinhauser '10, Lee, Smirnov, Smirnov '10, Gehrmann, Glover, Huber, Ikizlerli, Studerus '10, ...
- 3-loop jet functions: quark Brüser, Liu, Stahlhofen '18; gluon Banerjee, Dhani, Ravindran '18
- 3-loop soft function for $q_{T} L i$ and Zhu for EEC, Moult, Zhu '18, for heavy-to-light decays Brüser, Liu, Stahlhofen '19
- double-real for 3-loop quark beam function Melnikov, Rietkerk, Tancredi, Wever '18

Summary

Have discussed the structure of IR singularities of amplitudes with massless particles

- heavily constrained by
- soft-collinear factorization, collinear limits, non-abelian exponentiation
- regge limit Del Duca, Claude Duhr, Einan Gardi, Lorenzo Magnea, White '11; Caron-Huot, Gardi, Reichel, Vernazza '17
- determined by an anomalous dimension $\boldsymbol{\Gamma}$
- known to three loops, logarithmic part to 4 loops
- $\boldsymbol{\Gamma}$ is an important ingredient to resummation of n-jet processes
- N3LL + NNLO for weak boson q_{T} spectra!

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{s}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}} \\
& +\sum_{R} g^{R}\left(\alpha_{s}\right)\left[\sum_{(i, j)}\left(\mathcal{D}_{i i j j}^{R}+2 \mathcal{D}_{i i i j}^{R}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{(i, j, k)} \mathcal{D}_{i j k k}^{R} \ln \frac{\mu^{2}}{-s_{i j}}\right] \\
& +\sum_{i} \gamma^{i}\left(\alpha_{s}\right)+f\left(\alpha_{s}\right) \sum_{(i, j, k)} \mathcal{T}_{i i j k}+\sum_{(i, j, k, l)} \mathcal{T}_{i j k l} F\left(\beta_{i j l k}, \beta_{i k l j} ; \alpha_{s}\right) \\
& +\mathcal{O}\left(\alpha_{s}^{4}, \alpha_{s}^{5} \ln \frac{\mu^{2}}{-s_{i j}}\right)
\end{aligned}
$$

Thank you!

Extra slides

4-loop Z-factor

$$
\begin{aligned}
& \ln \mathbf{Z}= \frac{\alpha_{s}}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{0}}{2 \epsilon}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(-\frac{3 \beta_{0} \Gamma_{0}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{1}^{\prime}-4 \beta_{0} \boldsymbol{\Gamma}_{0}}{16 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{1}}{4 \epsilon}\right) \\
&+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(\frac{11 \beta_{0}^{2} \Gamma_{0}^{\prime}}{72 \epsilon^{4}}-\frac{5 \beta_{0} \Gamma_{1}^{\prime}+8 \beta_{1} \Gamma_{0}^{\prime}-12 \beta_{0}^{2} \boldsymbol{\Gamma}_{0}}{72 \epsilon^{3}}+\frac{\Gamma_{2}^{\prime}-6 \beta_{0} \boldsymbol{\Gamma}_{1}-6 \beta_{1} \boldsymbol{\Gamma}_{0}}{36 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{2}}{6 \epsilon}\right) \\
&+\left(\frac{\alpha_{s}}{4 \pi}\right)^{4}\left(-\frac{25 \beta_{0}^{3} \Gamma_{0}^{\prime}}{192 \epsilon^{5}}+\frac{13 \beta_{0}^{2} \Gamma_{1}^{\prime}+40 \beta_{0} \beta_{1} \Gamma_{0}^{\prime}-24 \beta_{0}^{3} \boldsymbol{\Gamma}_{0}}{192 \epsilon^{4}}\right. \\
&-\frac{7 \beta_{0} \Gamma_{2}^{\prime}+9 \beta_{1} \Gamma_{1}^{\prime}+15 \beta_{2} \Gamma_{0}^{\prime}-24 \beta_{0}^{2} \boldsymbol{\Gamma}_{1}-48 \beta_{0} \beta_{1} \boldsymbol{\Gamma}_{0}}{192 \epsilon^{3}} \\
&\left.+\frac{\Gamma_{3}^{\prime}-8 \beta_{0} \boldsymbol{\Gamma}_{2}-8 \beta_{1} \boldsymbol{\Gamma}_{1}-8 \beta_{2} \boldsymbol{\Gamma}_{0}}{64 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{3}}{8 \epsilon}\right)+\mathcal{O}\left(\alpha_{s}^{5}\right), \\
& \boldsymbol{\Gamma}\left(\alpha_{s}\right)= \sum_{n=0}^{\infty} \boldsymbol{\Gamma}_{n}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+1}=\frac{\partial}{\partial \ln \mu} \boldsymbol{\Gamma}(\{\underline{s}\}, \mu)=-\sum_{i} \Gamma_{\text {cusp }}^{i}\left(\alpha_{s}\right)
\end{aligned}
$$

[^0]: * from TB, Broggio Ferroglia '15; result is for scalar loop integral instead of form factor

