
Bhabha simulation for mono-photon DM analysis

Paweł Sopicki WG Meeting 29.11.2019

Some intro...

Feynman diagrams of main backgrounds: vv and Bhabha with single photon Pseudo-feynman diagram of our aim: DM production with a single photon emission

Some intro...

- vv background already tested and presented
- Bhabha background issues with cross section calculations reported last time
 - σ calculations diverged without using cut on electrons (which, essentialy for the mono-photon analysis, should be avoided)
 - Even with electron cuts σ were Mandelstam-t cut dependent
 - Idea from whizard developers: to change precision

- whizard-2.8 with three different precision setups:
 - standard
 - extended
 - quadruple
- The same process:

$$e+e- \rightarrow e+e- + n\gamma$$
, $n=1,2,3^{6}$

 $(E^{\gamma} > 30 \text{ GeV and } \theta^{\gamma} \text{ cuts, more})$ details later and in backups)

==== It -=	Integral[fb]	====== Error[fb] ========	Err[%]	Acc E	:ff[%] C	:hi2
40	4.1777472E+03					5.81
50	4.2944615E+03	4.62E+02	10.75	23.97*	NaN	
51	2.4236897E+05	2.37E+05	97.89	218.18	NaN	
52	1.9850011E+03	1.65E+02	8.30	18.50*	NaN	
53	3.6407057E+03	3.66E+02	10.07	22.43	0.05	
54	3.2099567E+03	2.77E+02	8.64	19.24*	0.08	
55	4.6336602E+03	9.20E+02	19.84	44.21	0.03	
60	3.5495152E+03	8.07E+01	2.27	22.67	0.05	11.70
70	5.7381912E+03	1.57E+02	2.74	19.26	0.07	1.86

Common picture for outputs in standard setup: plenty of NaN's unable to simulate at all!

- whizard-2.8 with three different precision setups:
 - standard
 - extended
 - quadruple
- The same process:

 $e+e-\rightarrow e+e-+n\gamma$, n=1,2,3

 $(E^{\gamma} > 30 \text{ GeV} \text{ and } \theta^{\gamma} \text{ cuts, more}$ details later and in backups)

lt	Integral[fb] ====================================	Error[fb]	Err[%]		ff[%] C	
40	8.1491474E+03		2.03	14.35	0.12	1.29
60	8.0352710E+03	8.27E+01	1.03	10.26	0.17	1.49
61	8.2485813E+03	3.26E+02	3.95	8.79*	0.22	
62	8.4940982E+03	5.57E+02	6.56	14.58	0.11	
63	8.0649193E+03	3.79E+02	4.69	10.44*	0.20	
64	8.4724081E+03	4.49E+02	5.30	11.77	0.13	
65	8.4559385E+03	5.69E+02	6.73	14.95	0.11	
66	9.0275809E+03	6.39E+02	7.08	15.73	0.11	
67	8.2816015E+03	4.41E+02	5.32	11.83*	0.16	
68	8.9131300E+03	6.55E+02	7.34	16.31	0.12	
69	8.6937978E+03	5.12E+02	5.89	13.07*	0.13	
70	9.0863603E+03	8.53E+02	9.39	20.85	0.09	

70 8.4295340E+03 1.53E+02 1.81 12.75 0.09 0.41

There are no NaNs anymore. Cross setion calculation stable

- whizard-2.8 with three different precision setups:
 - standard
 - extended
 - quadruple
- The same process:

 $e+e-\rightarrow e+e-+n\gamma$, n=1,2,3

 $(E^{\gamma} > 30 \text{ GeV and } \theta^{\gamma} \text{ cuts, more})$ details later and in backups)

Integral[fb] 	Error[fb]		Acc E		•
		1.58	11.18	0.10	1.45
8.1195947E+03	8.52E+01	1.05	10.46	0.25	0.74
8.6351331E+03	3.67E+02	4.25	9.47	0.20	
8.6614269E+03	5.27E+02	6.08	13.53	0.14	
8.1442399E+03	2.95E+02	3.62	8.05*	0.28	
7.9980600E+03	2.89E+02	3.61	8.04*	0.24	
8.4393615E+03	4.40E+02	5.21	11.59	0.19	
8.0360783E+03	2.69E+02	3.35	7.45*	0.34	
8.6299178E+03	3.28E+02	3.80	8.44	0.28	
7.9667466E+03	2.61E+02	3.28	7.28*	0.39	
7.7173461E+03	2.12E+02	2.74	6.09*	0.40	
8.7570794E+03	2.99E+02	3.41	7.59	0.29	
	7.9102143E+03 8.1195947E+03 8.6351331E+03 8.6614269E+03 8.1442399E+03 7.9980600E+03 8.4393615E+03 8.0360783E+03 8.6299178E+03 7.9667466E+03 7.7173461E+03 8.7570794E+03	7.9102143E+031.25E+028.1195947E+038.52E+018.6351331E+033.67E+028.6614269E+035.27E+028.1442399E+032.95E+027.9980600E+032.89E+028.4393615E+034.40E+028.0360783E+032.69E+028.6299178E+033.28E+027.9667466E+032.61E+027.7173461E+032.12E+028.7570794E+032.99E+02	7.9102143E+031.25E+021.588.1195947E+038.52E+011.058.6351331E+033.67E+024.258.6614269E+035.27E+026.088.1442399E+032.95E+023.627.9980600E+032.89E+023.618.4393615E+034.40E+025.218.0360783E+032.69E+023.358.6299178E+033.28E+023.807.9667466E+032.61E+023.287.7173461E+032.12E+022.74	7.9102143E+031.25E+021.5811.188.1195947E+038.52E+011.0510.468.6351331E+033.67E+024.259.478.6614269E+035.27E+026.0813.538.1442399E+032.95E+023.628.05*7.9980600E+032.89E+023.618.04*8.4393615E+034.40E+025.2111.598.0360783E+032.69E+023.357.45*8.6299178E+033.28E+023.808.447.9667466E+032.61E+023.287.28*7.7173461E+032.12E+022.746.09*8.7570794E+032.99E+023.417.59	8.1195947E+038.52E+011.0510.460.258.6351331E+033.67E+024.259.470.208.6614269E+035.27E+026.0813.530.148.1442399E+032.95E+023.628.05*0.287.9980600E+032.89E+023.618.04*0.248.4393615E+034.40E+025.2111.590.198.0360783E+032.69E+023.357.45*0.348.6299178E+033.28E+023.808.440.287.9667466E+032.61E+023.287.28*0.397.7173461E+032.12E+022.746.09*0.408.7570794E+032.99E+023.417.590.29

70 8.1715578E+03 9.49E+01 1.16 8.17 0.29 1.61

Even smaller errors

- Three different whizard-2.8 setups:
 - Tested with cuts on Energy or Pt of the hard photon (more details later)
 - Even though errors are smaller for the quadruple case, computing times are much longer. Therefore extended precision has been used for this studies

E > 30 GeV	σ [fb]
Quadruple	9867.5 ± 126
Extended	9906.9 ± 161
Standard	6763.6 ± 167
Pt > 10 GeV	V
Quadruple	9100.9 ± 86.4
Extended	9105.8 ± 88.7
Standard	6887.6 ± 146

Merging ISR and photons from ME (γ^{ME})

Merging ISR and photons from ME

- Lets define q⁺ and q⁻
- Basic requirement: at least one γ^{ME} has
 - a) E > 30 GeV (1st option)
 - b) Pt > 10 GeV (2nd option)
 - and $7^{\circ} < \theta < 173^{\circ}$ for both options
 - and all γ^{ME} should have $E^{\gamma \text{ME}} > 1$ GeV
- Merging would be done for some q^{merge} : generated γ^{ME} should have q^+ and q^- above q^{merge} ,
- ISR photons passing γ^{ME} cuts are removed in selection
- Tests for vv background: total σ insensitive on q^{merge} changes. Is Bhabha background sensitive to q^{merge} value?
 - Note: \overline{vv} test included a basic diagram without photons not a case for Bhabha

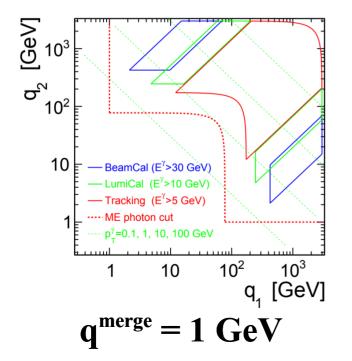
$$q_{-} = 2\sqrt{(E_{e_{-}}E_{\gamma})}\sin(\frac{\theta_{\gamma}}{2})$$

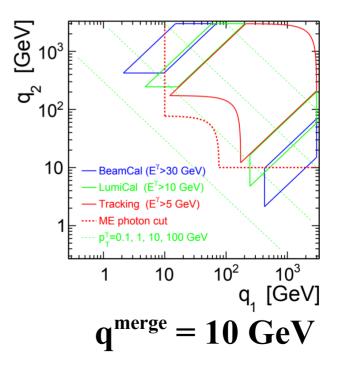
$$q_{+} = 2\sqrt{(E_{e_{+}}E_{\gamma})}\cos(\frac{\theta_{\gamma}}{2})$$

Merging ISR and photons from ME

Is Bhabha background sensitive to q^{merge} value?

	Effic.	generated σ error		corrected σ		
E30, q=1:	0.67	9865.2	+/- 138 fb	=>	6589.9 +/- 92.2	fb
E30, q=10:	0.78	8915.6	+/- 98.1 fb	=>	6973.3 +/- 76.7	fb
E30, q=50:	0.87	7762.5	+/- 80.7 fb	=>	6760.8 +/- 70.3	fb
Pt10, q=1:	0.66	9341.5	+/- 95.2 fb	=>	6158.4 +/- 62.8	fb
Pt10, q=10:	0.78	8546.5	+/- 66.2 fb	=>	6661.5 +/- 51.6	fb
Pt10, q= 50:	0.87	7846.7	+/- 69.3 fb	=>	6846.2 +/- 60.5	fb

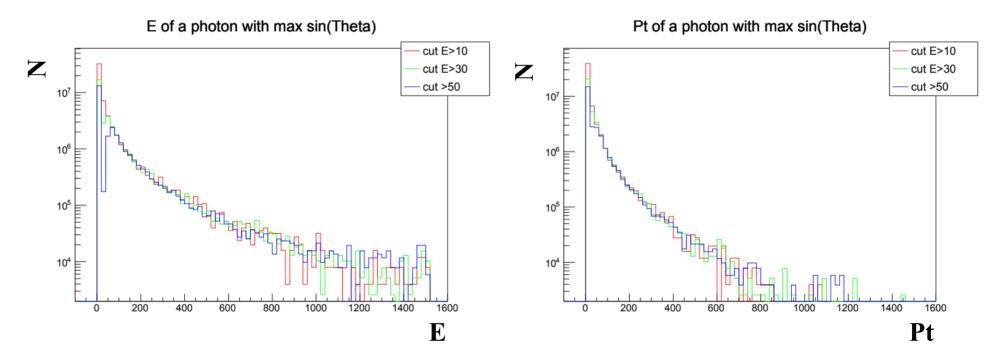

Selection efficiency in whizard-2.8 'compensates' (a bit too much!) for the decrease in generated cross section



Ok. But, is there a preference for some q^{merge} value?

Merging ISR and photons from ME

Using CLICdet design and plots by Filip Zarnecki (thank you!) one can see that q^{merge} ~ 1 GeV are prefered: no ISR photons reach the BeamCal

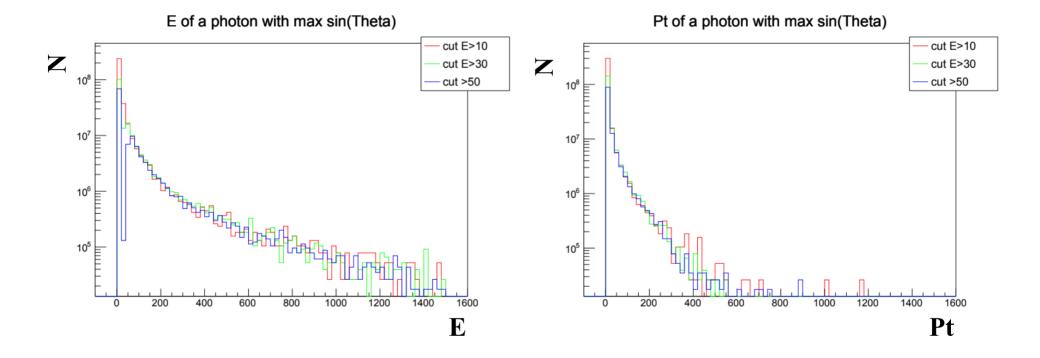

γ^{ME} : where and what to cut on? Energy vs Pt in vv and Bhabha

Energy vs Pt for vv and Bhabha

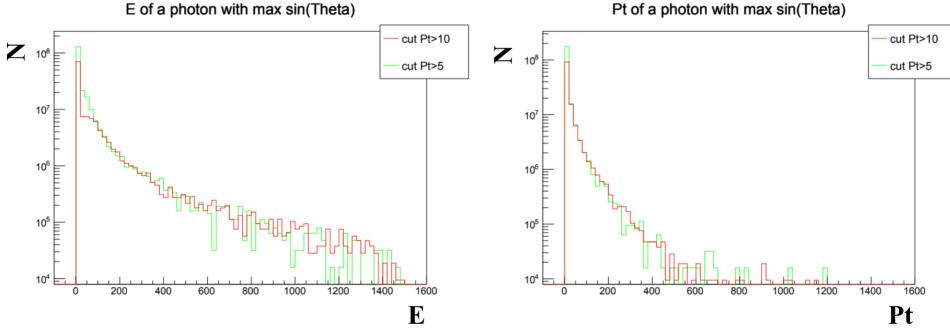
- With a q^{merge} set to 1 GeV, scans were done for $E_{cut} = 10, 30, 50$ GeV and $Pt_{cut} = 5, 10$ GeV
- Considering best integration-step stability and ratios of total $\sigma_{v\bar{v}} / \sigma_{Bhabha}$:
 - E > 10 GeV: 0.137 +/-0.003
 - E > 30 GeV: 0.189 +/- 0.003
 - E > 50 GeV: 0.215 +/- 0.002
 - Pt > 5 GeV: 0.221 + 0.002
 - Pt > 10 GeV: 0.291 + -0.002

For generation purposes the setup with Pt > 5 GeV seems to be the best solution: allows for further DM-signal cuts optimisations.

vv sample with cuts on Energy

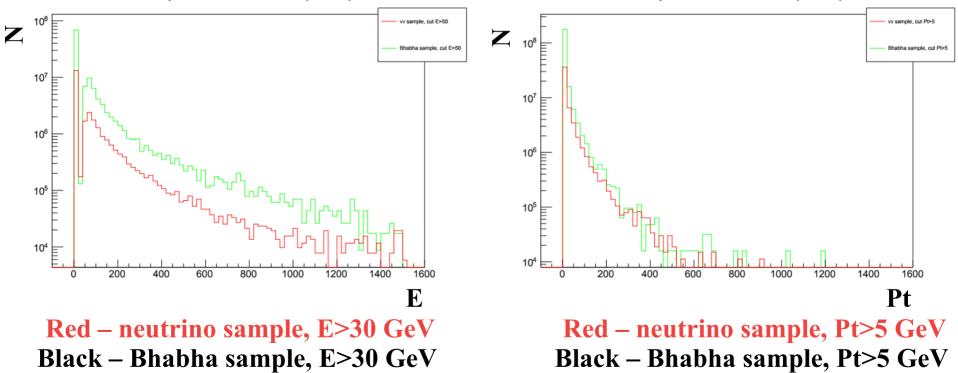

Distributions of photons with maximal $sin(\theta)$

vv sample with cuts on Pt


E of a photon with max sin(Theta) cut Pt>10 cut Pt>10 Z \mathbf{Z} cut Pt>5 cut Pt>5 10 107 E 10⁶ 10⁶ 10⁵ 10⁵ Ē 10⁴ 10⁴ Ē E 200 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600 0 400 0 E Pt

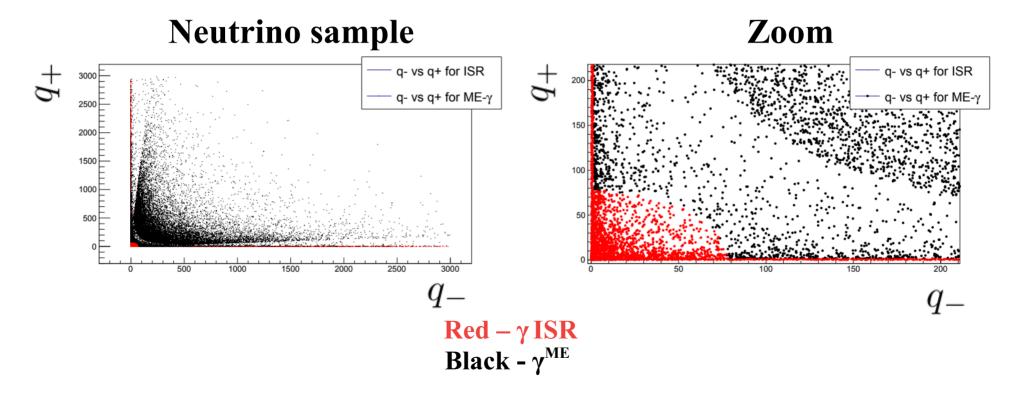
Pt of a photon with max sin(Theta)

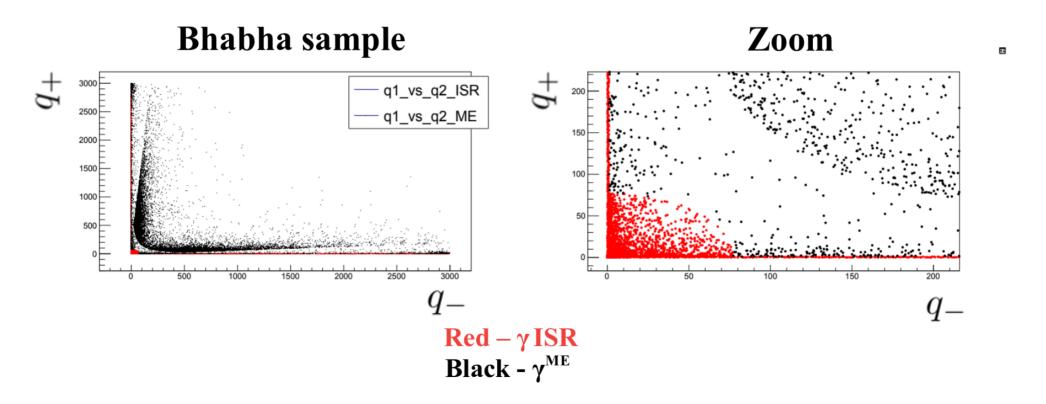
Bhabha sample with cuts on Energy


Bhabha sample with cuts on Pt

Pt of a photon with max sin(Theta)

vv/Bhabha comparison


E of a photon with max sin(Theta)


Pt of a photon with max sin(Theta)

Merging ISR and γ^{ME} for sample with Pt > 5 GeV cut

$$q^{merge} = 1 \text{ GeV}$$

Merging ISR and γ^{ME} for sample with Pt > 5 GeV cut

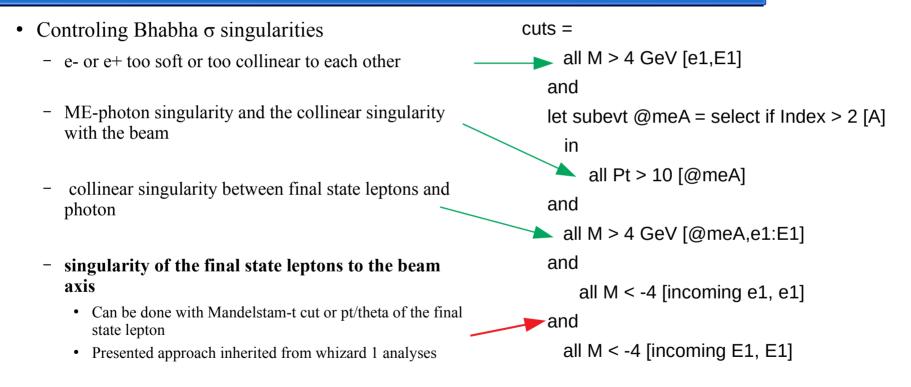
 $q^{merge} = 1 \text{ GeV}$

Conclusions & Outlook

- Moving to the extended precision with whizard-2.8 solved the problem of the unstable cross sections calculations
- Merging procedure for Bhabha background a bit more complicated than for vv case
- Sample with a cut on Pt of γ^{ME} has:
 - Better σ calculation stability
 - Smaller discrepancies between final σ for subprocesses calculated with extended and quadruple precision
 - Better ratios of $\sigma_{v\bar{v}}$ / σ_{Bhabha}
- Now all main backgrounds are tested and 'established' next step is to compare it to some DM models

Backups

E > 30 GeV $\sigma(1 \text{ photon} + 2 \text{ photons } 3 \text{ photons} = \text{total})$ [fb] $8171.6 (\pm 94.9) + 1643.8 (\pm 82.7) + 52.1(\pm 4.9) = 9867.5 (\pm 126)$ Quadruple $8429.5 (\pm 153) + 1419.4 (\pm 50.6) + 57.9 (\pm 3.8) = 9906.9 (\pm 161)$ Extended Standard 6763.6 (± 167) **Pt > 10 GeV** Quadruple $7521.2 (\pm 73.1) + 1515.5 (\pm 45.9) + 64.2 (\pm 4.0) = 9100.6 (\pm 86.4)$ $7506.5 (\pm 64.7) + 1548.4 (\pm 60.6) + 50.8 (\pm 3.3) = 9105.8 (\pm 88.7)$ Extended Standard 6887.6 (± 146)


Current whizard-2.8 setup

```
cuts =
    let subevt (a) meA = select if Index > 2 [A]
    in
      any E > E gamma cut and Theta > Th low cut and Theta < Th hgh cut
[@meA]
    and
     all sqrt(2.*sqrts*E)*sin(Theta/2.) > isr q cutoff [@meA]
    and
     all sqrt(2.*sqrts*E)*cos(Theta/2.) > isr q cutoff [@meA]
    and
     all E > isr e cutoff [@meA]
    and
      all Theta > angle separation [@meA,e1]
    and
      all Theta > angle separation [@meA,E1]
selection =
    let subevt @isrA = select if Index < 3 [A]
    in
     all (sqrt(2.*sqrts*E)*sin(Theta/2.) < isr q cutoff
      or sqrt(2.*sqrts*E)*cos(Theta/2.) < isr q cutoff
       or E < isr e cutoff) [@isrA]
```

Paramteres:

```
real E_gamma_cut = 10 GeV
real Th_low_cut = 7 degree
real Th_hgh_cut = 173 degree
real isr_q_cutoff = 1 GeV
real isr_e_cutoff = 1 GeV
real angle_separation = 1 degree
```

Previous whizard-2.7 setup

Lets call this a 'standard' set of cuts