The Fermi Large Area Telescope

F. Loparco Università di Bari and INFN Sezione di Bari

chool for Particle and Astroparticle Physics in Albania Tirana, Jan 27-31, 2020

- The Fermi Gamma-Ray Space Telescope (FGST) is an international space mission to study astrophysical gamma rays
- The satellite is equipped with two main instruments:
 - GLAST Burst Monitor (GBM)
 - Energy range from 8keV to 40MeV
 - Large Area Telescope (LAT)
 - Energy range from 20MeV to >300GeV
- The Fermi data are public and can be downloaded from the FSSC website:
 - https://fermi.gsfc.nasa.gov/ssc/data/
- Today we will analyze a set of data collected by the Fermi LAT

The Fermi mission

- rentil the second secon
- Fermi was launched on June, 11th 2008 from the Cape Canaveral Air Force Station (Florida)
- Fermi is on a nearly circular orbit
 - Altitude = 565 km
 - Inclination = 25.6°
 - Period = 96 minutes
- To see where is Fermi now:
 - <u>http://www.n2yo.com/?s=33053</u>

Space Telescope

Gamma-ray interactions with matter

• Possible interactions:

- Raileigh scattering ($\sigma_{coherent}$)
- Photoelectric effect (σ_{p.e.})
- Compton effect (σ_{incoh})
- Pair production in the nuclear or electronic field (k_N, k_e)
- Photonuclear interactions with destruction of the target nucleus (σ_{nuc})
- The relative probability of each process is proportional to its <u>cross</u> <u>section</u>
 - The cross sections depend on the projectile energy

The Fermi LAT

Precision Si-strip Tracker (TKR)

• Measures incident γ -ray direction

Gamma-ray Space Telescope

- + 18 XY tracking planes: 228 μm strip pitch
- High efficiency. Good position resolution
- 12x 0.03 X_0 front end \rightarrow reduce multiple scattering
- $4 \ge 0.18 X_0$ back-end \rightarrow increase sensitivity >1 GeV

Anticoincidence Detector (ACD)

- 89 scintillator tiles
- First step in the reduction of large charged cosmic ray background
- Segmentation reduces self-veto at high energy

Hodoscopic CsI Calorimeter

- Segmented array of 1536 CsI(Tl) crystals
- 8.6 X₀: shower max contained ~ 200 GeV normal (1.5X₀ from TKR included)
 - ~ 1TeV @ 40° (CAL-only)
- Measures the incident $\gamma\text{-ray}$ energy
- Rejects cosmic-ray background

Electronics system

• Includes flexible, highly efficient, multi-level trigger

The silicon tracker (TKR)

- Each TKR plane consists of 16 wafers
 - Cross section = 9×9 cm²
 - Strip pitch = 228 μm
 - 384 strips in each wafer → 1536 strips in each plane
 - Strips of adjacent wafers are bonded
- SSD planes are arranged in «trays»
 - Each tray hosts a SSD plane with strips along the X-axis and a SSD planes with strips along the Y-axis
 - A tungsten converter layer is eventually placed between the two SSD planes

The silicon tracker towers

- Each TKR tower hosts 19 trays and 36 SSD planes
 - The top and bottom trays are equipped with only one SSD plane
- 18 SSD planes with strips along the X-axis and 18 planes with strips along the Y-axis
 - 55296 strips per tower
 - About 880k strips in the TKR

Gamma-ray

The calorimeter (CAL)

- 1536 CsI(Tl) crystals arranged in 16 towers
 - Crystal size = $2.7 \times 2 \times 32.6$ cm³
 - The crystals in each tower are hodoscopically arranged in 8 planes
- Total vertical thickness = 8.6 X₀

Germi The anticoincidence detector (ACD)

- 89 plastic scintillator tiles readout by PMTs
 - Empty spaces between tiles filled with plastic scintillator ribbons

F. Loparco

Space Telescope

How the LAT detects gamma rays

- Five hardware trigger primitives:
 - TKR: 3 x + 3 y tracker planes hit in a row
 - CAL LO: single log with more than 100 MeV
 - CAL HI: single log with more than 1 GeV
 - ROI: MIP signal in a ACD tiles close to a triggering tower
 - CNO: heavy ion signal in the ACD
- Upon L1 trigger the entire detector is read out
- Need onboard filtering to fit the data volume within the allocated bandwidth
 - GAMMA: the purpose is to select γ-ray candidates and events that deposit at least 20 GeV in the CAL
 - High energy events, including electrons, are available for analysis on the ground
 - Heavy Ions: the purpose is to select heavy ions with large energy deposits in the ACD
 - MIP: the purpose is to select not showering charged particles (protons)
 - Disabled in standard science operations
 - Diagnostic: the purpose is to select an unbiased event sample for filter and background performance studies
 - The selected sample is pre-scaled of a factor 250

An example of gamma-ray event

An electron (or positron?) event

F. Loparco

An example of proton event

The LAT gamma-ray data

- The LAT observes about 20% of the sky at any instant
 - The whole sky is observed every 3 hours
- Uptime fraction ~ 99%
- About 550 billion triggers from launch (@August 2017)
 - ~110 billion events downlinked
 - ~2800 million events available at the FSSC
- Different gamma-ray event classes:
 - Triggered events are dominated by CR background events
 - Need to define additional cuts to get γ -ray rich dataset
 - Several event reconstruction and classification algorithms have been developed during the mission
 - Starting from July 2015, the LAT data are processed with the newest "Pass 8" classification algorithms
 - Nested "event classes" for various types of γ ray sources:
 - Transient: loosest, for flaring sources
 - Source: moderate, for bright sources
 - Clean: tight, for γ-ray diffuse
 - Ultraclean: tightest, for extragalactic γ rays
- The LAT data are public and can be downloaded from the FSSC website (see http://fermi.gsfc.nasa.gov/ssc/)
 - Data are made public after 24 hours (or less)
 - The science tools for data analysis are also provided

Instrument response functions (IRFs)

• The expected count rate from a given source can be expressed as:

$$r(E',\widehat{v}') = \iint dEd\widehat{v} R(E',\widehat{v}',E,\widehat{v}) \Phi(E,\widehat{v})$$

- E', \hat{v}' = measured photon energy and arrival direction
- E, \hat{v} = true photon energy and arrival direction
- $\Phi(E, \hat{v})$ = photon flux from the source
- $R(E', \hat{v}', E, \hat{v})$ = instrument response function (IRF)
- The IRF can be factorized as:

 $R(E', \hat{v}', E, \hat{v}) = A_{eff}(E, \hat{v}) P(\hat{v}', E, \hat{v}) D(E', E, \hat{v})$

- $A_{eff}(E, \hat{v})$ = effective area
 - A_{eff} is the cross section of the LAT for detecting a photon with true energy *E* coming from the direction \hat{v}
- $P(\hat{v}', E, \hat{v})$ is the point spread function (PSF)
 - The PSF is the probability that a photon with true energy *E* coming from the direction \hat{v} is observed as coming from \hat{v}'
- $D(E', E, \hat{v})$ is the energy dispersion
 - The energy dispersion is the probability that a photon with true energy *E* coming from the direction \hat{v} is observed with energy *E'*

Effective area and acceptance

P8R2_SOURCE_V6 effective area at 10 GeV, averaged over ϕ

- Drop at E<100 MeV due to the pair production cross section and to the trigger condition, which requires 3 tracker planes in a row
- Drop at E>100 GeV due to backsplash in the ACD

Point Spread Function (PSF)

- At low energies the PSF is poor because of multiple scattering of the e+e- pairs in the tracker planes
- At high energies the PSF is limited by the strip pitch (228µm)

Vela pulsar count maps (10°×10°, 75 days of data)

Plots taken from Astrophys. J. 696, 1084A (2009)

Gamma-ray

Energy dispersion

- Limited at low energies by energy loss in the tracker
- Limited at high energies by saturation of the CsI crystals and by partial shower containment in the calorimeter

Science with the Fermi LAT

The high-energy gamma-ray sky seen by the Fermi LAT

Dermi

Gamma-ray Space Telescope

Equatorial coordinates

- The fundamental plane is the projection of the Earth Equator on the Celestial Sphere (Celestial Equator)
- The primary direction is the ascending node of the Ecliptic on the Celestial Equator (Vernal Equinox)
- Right Ascension (RA) is measured eastwards from the Vernal Equinox
- **Declination (DEC)** is measured northwards from the Celestial Equator

Galactic coordinates

- Galactic longitude (L) is measured with primary direction from the Sun to the center of the galaxy in the galactic plane
- Galactic latitude (B) measures the angle of the object above the galactic plane

Sermi Today's source: the blazar 3C 454.3

