

IR6 Dump size optimization

R. De Maria

WP2 Meeting 25/11/2019

IR6 optics constraints

Optics knobs: in Q13L to Q13R: 16 quadrupoles

Optics constraints:

- (12 strict) Matching to arcs and squeeze IP5 ($\beta_{x,y}$, $\alpha_{x,y}$, D_x , D'_x)
- (2 strict) Strength Q4.L6B1, Q4.R6B2 fixed by the transfer line
- (2) MKD-TCT phase advance $\Delta \mu_x$ depends on available H aperture
- (4) beam size beam dump (TDE) $\beta_x > 4$ km, $\beta_y > 3.2$ km, $\beta_x \beta_y > (4.5$ km)²

(2)
$$\Delta \mu_{x, MKD-TCDQ}, \Delta \mu_{x, MKD-TCSP} < 90 \pm 4$$

- (4) beam size TCDQ β_x >430 m, β_y >145 m
- (4) minimum gap TCDQ > 3mm, 1 mm margin, constant gap at flat top $(\beta_x D_x)$
- (8) Peak β in the insertion during squeeze <1.5 km
- (2) Beam size TCDS β_v >200 m
- (4) Strength Q5, non-conform MQTL.11
- (20) Aperture at injection (peak beta and dispersion at focusing quads)

Optics constraints Round squeeze

Each type ATS factor in point 5 (Round $\beta_x^*=\beta_y^*$, Flat $\beta_x^*>\beta_y^*$, FlatCC $\beta_x^*<\beta_y^*$) and noMS14 variants requires different optics.

Optics constraints Flat squeeze

Each type ATS factor in point 5 (Round $\beta_x^*=\beta_y^*$, Flat $\beta_x^*>\beta_y^*$, FlatCC $\beta_x^*<\beta_y^*$) and noMS14 variants requires different optics.

Optics constraints FlatCC squeeze

Each type ATS factor in point 5 (Round $\beta_x^*=\beta_y^*$, Flat $\beta_x^*>\beta_y^*$, FlatCC $\beta_x^*<\beta_y^*$) and noMS14 variants requires different optics.

Optics, aperture, crossing plane

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	Round	Flat	FlatCC	FlatCCHV	FlatCCHV
β* Xing/Sep [cm]	15/15	30/7.5	18/7.5	18/9	18/7.5
Xing angle [µrad]	±250	±245	±240	±240	±240
Crossing plane IP5	V (or H)	Н	н	V	V
Aperture Xing plane [σ]	13.1	15.6	14.2	14.2	14.2
Aperture Sep plane [σ]	16.5	12.7	12.7	13.9	12.7
H Aperture Point 1/5	13.1/16.5	12.7/15.6	12.7/14.2	14.2/13.9	14.2/12.7
MKD-TCT [°] IP1 [B1/B2]	5/19	23/10	4/6	13/22	8/22
MKD-TCT [°] IP5 [B1/B2]	30/31	14/22	27/25	40/45	51/54
H Ap. Protected IP1 W/Cu	11.2/11.2	11.4/11.2	11.2/11.2	11.3/11.2	11.3/11.2
H Ap. Protected IP5 W/Cu	11.9/11.2	11.3/11.2	11.7/11.2	13.3/12.3	14.1/13.1
Ap. Margin W [σ]	1.9 (or 1.2)	1.3	1.5	0.6	-1.4
Ap. Margin CuCD [σ]	1.9 (or 1.9)	1.5	1.5	1.6	-0.4

Assuming different settings for TCTH and TCTV (R. Bruce)

Present aperture margins are being considered to be used for:

- 1) Increase collimators gaps to reduce impedance (this also can relax TCDQ gaps and interlocks)
- 2) Introduce IP offset in the crossing plane to reduce radiation deposited in the triplets
- 3) Reduce further β^* (if extra margin in DA)

IR6 Dump size optimization

- Increase spot size at the beam dump by relaxing MKD-TCT phase advance or other constraints
- Spot size cannot be increased at injection due to aperture constraints, but can be done during ramp&squeeze. Below the results for β*=15 cm.

B1/B2	Request [km]	V1.4 round [km]	Limited by MQTL11.R6B1 β _y in Q4.R6B2	MQTL11.R6B1 at 400 A
β _x	>4	6.3/5.0	9.0/5.0	9.3/5.0
β _y	>3.2	3.8/7.8	5.4/9.9	5.9/9.9
$(\beta_x \beta_y)^{1/2}$	>4.5	4.6/6.2	7.0/7.0	7.4/7.0

General limits: RQTL11.R6B1, RQ8.R6B1, RQ8.L6B2, peak β. MKD-TCT still below 20 °

First improvement 25% in beam size at the end of the squeeze

Optics plots

Conclusion

- IR6 optics has many conflicting constraints
- It possible to increase the beam size at the dump by about 25% at the expenses of a peak beta of 1.5 km in Q4/Q5 at the end of the squeeze.
- Some RQ8, RQTL, peak β limiting factor
- Intermediate values should confirmed by studying new optics transitions during the ramp

Backup

Optics, aperture, crossing plane

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	Round	Flat	FlatCC	FlatCCHV	FlatCCHV
β* Xing/Sep [cm]	15/15	30/7.5	18/7.5	18/9	18/7.5
Xing angle [µrad]	±250	±245	±240	±240	±240
Crossing plane IP5	V (or H)	н	н	V	V
Aperture Xing plane [σ]	13.1	15.6	14.2	14.2	14.2
Aperture Sep plane [σ]	16.5	12.7	12.7	13.9	12.7
H Aperture Point 1/5	13.1/16.5	12.7/15.6	12.7/14.2	14.2/13.9	14.2/12.7
MKD-TCT [°] IP1 [B1/B2]	5/19	23/10	4/6	13/22	8/22
MKD-TCT [°] IP5 [B1/B2]	30/31	14/22	27/25	40/45	51/54
H Ap. Protected IP1 W/Cu	11.2/11.2	11.4/11.2	11.2/11.2	11.3/11.2	11.3/11.2
H Ap. Protected IP5 W/Cu	11.9/11.2	11.3/11.2	11.7/11.2	13.3/12.3	14.1/13.1
Ap. Margin W [σ]	1.9 (or 1.2)	1.3	1.5	0.6	-1.4
Ap. Margin CuCD [σ]	1.9 (or 1.9)	1.5	1.5	1.6	-0.4

Assuming different settings for TCTH and TCTV (R. Bruce):

