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Latent Instability in the LHC

L2D2 — Loss of Landau damping Driven by Diffusion

Impact of L2D2 on HL-LHC

Summary & Outlook




Latent Instability due to Noise

« Instabilities of high latencies have
been observed in LHC before collision.
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Latent Instability due to Noise

« Instabilities of high latencies have
been observed in LHC before collision.

o Reproduced in dedicated experiments.
[S.V. Furuseth et al., WEPTS044, IPAC 2019.]

« The instabilities are driven by noise,
not caused by machine variations.
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Latent Instability due to Noise .

o Instabilities of high latencies have é‘i

been observed in LHC before collision. 2

« Reproduced in dedicated experiments. "}
[S.V. Furuseth et al., WEPTS044, IPAC 2019.] o) ;
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« The instabilities are driven by noise,
not caused by machine variations.

o This mechanism is linked to the
discrepancy between the predicted and
required octupole current in the LHC.
[X. Buffat et al., Evian Workshop 2019].
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Noise definitions

Rigid-bunch/dipolar noise:
Equal stochastic kicks to all
particles in a bunch, as the
low-frequent noise in the LHC.
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Noise definitions

Rigid-bunch/dipolar noise: Crab amplitude noise: Kick
Equal stochastic kicks to all dependent on longitudinal phase
particles in a bunch, as the Ap x sin(¢s)AV.

low-frequent noise in the LHC.
[Crab Noise, P. Baudrenghien, 2015]

Sondre Vik Furuseth


http://dx.doi.org/10.1103/PhysRevSTAB.18.101001

L2D2 -
Loss of Landau damping Driven by Diffusion




Noise Excited Wakefields — Numerical Model

o Simulations with ideal damper (G),
linear detuning (/t), chromaticity,
white noise (o¢) and wakefields.

« No lattice non-linearities.
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Noise Excited Wakefields — Numerical Model

o Simulations with ideal damper (G),
linear detuning (/t), chromaticity,
white noise (o¢) and wakefields.

 No lattice non-linearities.
« Challenging and time consuming to
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get results. o0 e
« 10 simulations with different AR L B
seeds return a large spread. B
« Beyond a numerical threshold, the 7 & oct =
O

latency (7) for one case scales as

Sondre Vik Furuseth The impact of noise o



Noise Excited Wakefields — Analytical Model



https://indico.cern.ch/event/856481/

Noise Excited Wakefields — Analytical Model

1. Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
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Noise Excited Wakefields — Analytical Model

1. Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
2. Landau damping changes the eigenfrequencies to 2,,.
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Step 2: Landau Damped Modes

o Find €, inside the stability diagram with a linear extrapolation.
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Step 2: Landau Damped Modes

o Find €, inside the stability diagram with a linear extrapolation.

« Simulations with COMBI (Q’ < 0) support the linear extrapolation
outside the stability diagram as expected.
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Step 2: Landau Damped Modes

o Find €, inside the stability diagram with a linear extrapolation.

« Simulations with COMBI (Q’ < 0) support the linear extrapolation
outside the stability diagram as expected, but also inside.
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Noise Excited Wakefields — Analytical Model

1. Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
2. Landau damping changes the eigenfrequencies to 2,,.
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Noise Excited Wakefields — Analytical Model

Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
Landau damping changes the eigenfrequencies to €2,,.

Noise, £(t), excites the stable eigenmodes. The impact on
mode |m) is proportional to 7,, = ({|m).

1.

2.
3.
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Noise Excited Wakefields — Analytical Model

1.

N

Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
Landau damping changes the eigenfrequencies to €2,,.
Noise, £(t), excites the stable eigenmodes. The impact on
mode |m) is proportional to 7,, = ({|m).

. Wakefields transfer the mode energy to single particles.
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Noise Excited Wakefields — Analytical Model
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Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
Landau damping changes the eigenfrequencies to €2,,.
Noise, £(t), excites the stable eigenmodes. The impact on
mode |m) is proportional to 7,, = ({|m).

. Wakefields transfer the mode energy to single particles.
. This mechanism can be modeled as a frequency

dependent diffusion, with diffusion coefficient

2
Non0e | Awp|

D(w) = J - v,  B(w; Q) C(wim, D).

2 Im{Qn)
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Noise Excited Wakefields — Analytical Model

1.
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Transverse wakefields drive eigenmodes |m) of complex
eigenfrequencies w,,. Modes evolve like exp[—iwt].
Landau damping changes the eigenfrequencies to €2,,.
Noise, £(t), excites the stable eigenmodes. The impact on
mode |m) is proportional to 7,, = ({|m).

. Wakefields transfer the mode energy to single particles.
. This mechanism can be modeled as a frequency

dependent diffusion, with diffusion coefficient
2
. Wrev 77%70-5 A<’um|

R NI

- B(w; Q) - Cwm, Q).

e See more details of the derivation in [ABP Forum 2019-11-07].
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Woakefield driven Diffusion in 1D

The diffusion is centred at the mode frequency, w(J) = Q,,.
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Wakefield driven Diffusion in 2D, 1, = 0.01

The diffusion is centred at the mode frequency, w(Jx, Jy) = Qp .
Mode 1 and rigid-bunch noise.
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Wakefield driven Diffusion in 2D, 1, = 0.01

The diffusion is centred at the mode frequency, w(Jx, Jy) = Qp .
Mode 1 and rigid-bunch noise.
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Wakefield driven Diffusion in 2D, 0, = 1
o Latency 7 < 1/D o< 1/7?% = 1.




Wakefield driven Diffusion in 2D, 0, = 1
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Initial results of simplified model.
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Wakefield driven Diffusion in 2D, 0, = 1

o Latency 7 < 1/D o< 1/7?% = 1. 5
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L2D2 — Loss of Landau Damping due to Diffusion

o To drill a hole in the stability diagram,
the diffusion:




L2D2 — Loss of Landau Damping due to Diffusion

o To drill a hole in the stability diagram,
the diffusion:

« in the horizontal plane must not
depend on the vertical tune.

« must not be uniform.

« must be fast comparable to other
uniform diffusions (IBS).
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L2D2 — Loss of Landau Damping due to Diffusion

o To drill a hole in the stability diagram,

. H Rel. Diffusion Coefficient
the diffusion: ——
0.321} 8 Working point

« in the horizontal plane must not
depend on the vertical tune.
« must not be uniform. S o320l
« must be fast comparable to other
uniform diffusions (IBS).
03&’309 0.3|10 0.3:11

Qx
axxJx, anyy € {07 10_3}
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L2D2 — Loss of Landau Damping due to Diffusion

o To drill a hole in the stability diagram,
the difFusion: Rel. Diffusion CoTafficie%nt
. . 0.321} 8 Working point
« in the horizontal plane must not
depend on the vertical tune.
« must not be uniform.

« must be fast comparable to other
uniform diffusions (IBS).

« To cause an instability, the hole must 033055 ST i
be at the tune of an unstable mode! Ox

axxJx, anyy € {07 10_3}

>
S 0320}
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Impact of L2D2 on HL-LHC




Mitigation of Noise Excited Wakefields




Mitigation of Noise Excited Wakefields
« Reduce the drilling rate, D n,2n0§|Awm|2 /1m{Q,}>.

* Reduce the noise amplitude (o¢).
* Avoid unstable modes with large 7, as mode 0 in the LHC.

* Reduce the impedance (Awp).
* nm and Im{Aw,} depend on Q" and G (see backup).
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Mitigation of Noise Excited Wakefields
« Reduce the drilling rate, D n,2n0§|Awm|2 /1m{Q,}>.

* Reduce the noise amplitude (o¢).
* Avoid unstable modes with large 7, as mode 0 in the LHC.
* Reduce the impedance (Awp).

* nm and Im{Aw,} depend on Q" and G (see backup).

* Increase the margin to the stability threshold (Im{Q,}).
* E-lens, enhanced octupole detuning using the telescopic index, etc.
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Mitigation of Noise Excited Wakefields
« Reduce the drilling rate, D n,2n0§|Awm|2 /1m{Q,}>.

* Reduce the noise amplitude (o¢).
* Avoid unstable modes with large 7, as mode 0 in the LHC.

* Reduce the impedance (Awp).
* nm and Im{Aw,} depend on Q" and G (see backup).

* Increase the margin to the stability threshold (Im{Q,}).
* E-lens, enhanced octupole detuning using the telescopic index, etc.

« Reduce the waiting time.

* Collide as early as possible, to get detuning help from beam-beam interactions.
* Wait until the beams are colliding to turn on the crab cavities.
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Mitigation of Noise Excited Wakefields
« Reduce the drilling rate, D n,2n0§|Awm|2 /1m{Q,}>.

* Reduce the noise amplitude (o¢).
* Avoid unstable modes with large 7, as mode 0 in the LHC.

* Reduce the impedance (Awp).
* nm and Im{Aw,} depend on Q" and G (see backup).

* Increase the margin to the stability threshold (Im{Q,}).
* E-lens, enhanced octupole detuning using the telescopic index, etc.

« Reduce the waiting time.
* Collide as early as possible, to get detuning help from beam-beam interactions.
* Wait until the beams are colliding to turn on the crab cavities.

« Change the detuning qualitatively.
* Avoid detuning dependence on d.o.f. in the same plane (RFQ, Q”, a=0). TBI.
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Experimental Verification
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Experimental Verification

Direct Measurement

o White noise — BTF.
[C. Tambasco et al., MD3291]
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Experimental Verification

Direct Measurement

o White noise — BTF.
[C. Tambasco et al., MD3291]

o Unstable in 2018.
Can be surpassed by:
* Increase I, before BTF.
« Retract the collimators
before BTF.
« Use the anti-damper in
place of wake or BTF? TBI.
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Experimental Verification

Direct Measurement

o White noise — BTF.
[C. Tambasco et al., MD3291]

o Unstable in 2018.

Can be surpassed by:

* Increase I, before BTF.
» Retract the collimators

before BTF.

« Use the anti-damper in
place of wake or BTF? TBI.
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Indirect Measurement (Latency)

o White noise — Wait.
[S.V. Furuseth et al., MD3288]
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Experimental Verification

Direct Measurement

o White noise — BTF.
[C. Tambasco et al., MD3291]

o Unstable in 2018.

Can be surpassed by:

* Increase I, before BTF.
» Retract the collimators

before BTF.

« Use the anti-damper in
place of wake or BTF? TBI.
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Indirect Measurement (Latency)

« White noise — Wait.
[S.V. Furuseth et al., MD3288]

« Vary parameters to compare
to theory (@', G, lt, N).

« Difficult to get many data
points in the LHC.

« Can we test in SPS or
IOTA (V. Lebedev)? TBI.
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Summary

« Noise can cause a loss of Landau damping driven by diffusion.




Summary

« Noise can cause a loss of Landau damping driven by diffusion.

« Instabilities of high latencies can develop in high-energy hadron
machines with noise and impedance, by changing the distribution.
« There are wake-independent mechanisms that could cause a
similar diffusion, but less consistently (see backup).
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Summary

« Noise can cause a loss of Landau damping driven by diffusion.

« Instabilities of high latencies can develop in high-energy hadron
machines with noise and impedance, by changing the distribution.
 There are wake-independent mechanisms that could cause a

similar diffusion, but less consistently (see backup).

« One recommended mitigation technique is to reduce the
drilling rate, by considering D n%qag\Awm\z /1Im{Qm}°.
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Summary

« Noise can cause a loss of Landau damping driven by diffusion.

« Instabilities of high latencies can develop in high-energy hadron
machines with noise and impedance, by changing the distribution.

 There are wake-independent mechanisms that could cause a
similar diffusion, but less consistently (see backup).

« One recommended mitigation technique is to reduce the
drilling rate, by considering D n%qag\Awm\z /1Im{Qm}°.
 Rigid-bunch noise is severely detrimental if mode 0 is unstable.
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Summary

« Noise can cause a loss of Landau damping driven by diffusion.

« Instabilities of high latencies can develop in high-energy hadron
machines with noise and impedance, by changing the distribution.

 There are wake-independent mechanisms that could cause a
similar diffusion, but less consistently (see backup).

« One recommended mitigation technique is to reduce the

drilling rate, by considering D n%qag\Awm\z /1Im{Qm}°.
 Rigid-bunch noise is severely detrimental if mode 0 is unstable.
o Crab amplitude noise may be as problematic for mode 1!
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Outlook

« Further development of the theory (Van Kampen modes, ... ).
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Outlook

« Further development of the theory (Van Kampen modes, ... ).
o Attempt to estimate the latency without PyRADISE (PDE-solver).
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Outlook

« Further development of the theory (Van Kampen modes, ... ).
o Attempt to estimate the latency without PyRADISE (PDE-solver).

o Need a complete understanding of the spectrum of the external
noise in the (HL-) LHC (e.g. see next talk).
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Outlook

« Further development of the theory (Van Kampen modes, ... ).
o Attempt to estimate the latency without PyRADISE (PDE-solver).

o Need a complete understanding of the spectrum of the external
noise in the (HL-) LHC (e.g. see next talk).

« Prediction of latency in HL-LHC, with max octupole detuning.

« With external rigid-bunch noise (7> < 107*) — Similar to LHC.
« With crab amplitude noise (7> ~ 1)- Find a noise acceptance.
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Outlook

« Further development of the theory (Van Kampen modes, ... ).
o Attempt to estimate the latency without PyRADISE (PDE-solver).

o Need a complete understanding of the spectrum of the external
noise in the (HL-) LHC (e.g. see next talk).

« Prediction of latency in HL-LHC, with max octupole detuning.
« With external rigid-bunch noise (7> < 107*) — Similar to LHC.
« With crab amplitude noise (7> ~ 1)- Find a noise acceptance.

o Will the HO beam-beam detuning be sufficient to mitigate L2D2
from crab amplitude noise during STABLE BEAM (1% ~1)?
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Thank you for your attention!
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Summary

« Noise can cause a loss of Landau damping driven by diffusion.

« Instabilities of high latencies can develop in high-energy hadron
machines with noise and impedance, by changing the distribution.

 There are wake-independent mechanisms that could cause a
similar diffusion, but less consistently (see backup).

« One recommended mitigation technique is to reduce the

drilling rate, by considering D n%qag\Awm\z /1Im{Qm}°.
 Rigid-bunch noise is severely detrimental if mode 0 is unstable.
o Crab amplitude noise may be as problematic for mode 1!
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Backup: Mode description

o The chromaticity and gain affects
both the moments (7,,) and complex
tune shifts (Aw,,) of the modes.

« Figures show the dipole moment and
growth rate of the dominant mode. T
« Q@ < 0: Mode 0 is dominant. s
« @ > 0: Mode 0 is stable. Dipole

moment of mode 1,2,... increases.

o To be done: Calculate the dependence
of the latency on Q" and G.

Dipole moment

max(Im{AQ})
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Backup: Diffusion driven by colored noise

e 50 Hz lines may drive a narrow

diffusion that cannot be mitigated. e oo
« Non-reproducible instabilities seen in i %3‘ A g
the LHC with ~ 10 times more AL T
Landau damping than needed %
according to the model.
« Not destabilizing unless a 50 Hz line is i 69'596315
at the correct frequency.
« If so, the wakefields will enhance [X. Buffat, 153rd WP2 Meet.]

the diffusion.
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Backup: Diffusion driven by non-linearities
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[C. Tambasco, PhD Thesis]

Jele

o Non-linearities can cause a frequency dependent diffusion.

o Most resonance lines are given by mQ,+nQ, =p, where m, n#0.
They do not lead to diffusion for all particles of a specific tune.
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https://infoscience.epfl.ch/record/230247

Backup: Mitigation Technique ) —:
S oae |
« The diffusion and drilling is narrow in £ - I~
frequency. e izt e be
o Can try to vary the frequency of the e R:{io}/ 0
single particles to drill everywhere. 3 ’A‘r .
. This might counteract the importance 31— '~ o
of keeping €2; small. _1’71‘4 N — ;
« These calculations were done with os CGr
constant diffusion coefficient based on ~_>/(%:50)-0:9 1 .
the initial distribution. éj //@, Zg
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