Intro to CERN

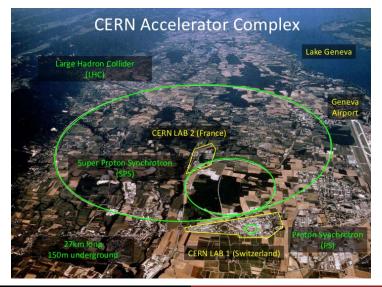
## **Open Source Hardware** at CERN

Erik van der Bij

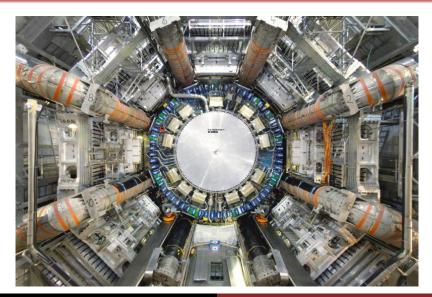
CERN, Geneva, Switzerland

Open Science: CERN perspectives Geneva, 6 November 2019

- Introduction to CERN
- Introduction to Open Source Hardware
- Open Source Hardware in practice
- 4 How to get organised


## Outline

- Introduction to CERN
- Introduction to Open Source Hardware
- Open Source Hardware in practice
- 4 How to get organised


## **Accelerators**

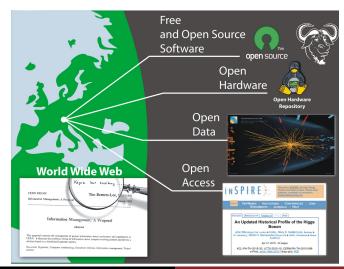
Intro to CERN

•000



## **Detectors**




## Dissemination

Intro to CERN

0000



# How to interpret one's dissemination mandate in the 21<sup>st</sup> century



## Outline

- 1 Introduction to CERN
- 2 Introduction to Open Source Hardware
- Open Source Hardware in practice
- 4 How to get organised

## Why we use Open Hardware

### Design re-use

Intro to CERN

- When it's Open, people are more likely to re-use it.
- When it's Open, people are much more likely to contribute.

### Peer review

- Get your design reviewed by experts all around the world.
- Therefore the designs will become better.

## Dissemination of knowledge

One of CERN's key missions!

## Why we use Open Hardware

Intro to CERN

### Get a design just the way we want it

We specify fully the design.

### Healthier relationship with companies

 No vendor-locked situations. Companies selected solely on the basis of technical excellence, good support and price.

## Spend money where you or your funding agencies want

- Makes life easier for public institutions.
- Opens the door to smaller companies with good local support.

Intro to CERN

## There is an Open Source Hardware definition!

### Check out http://www.oshwa.org/definition/

- Inspired by the Open Source definition for software.
- Focuses on ensuring freedom to study, modify, distribute, make and sell designs or hardware based on those designs.
- Now we know exactly what we mean when we say OSHW!

## CERN Open Hardware License – ohwr.org/cernohl

OSHW in practice

### Provides a solid legal basis

- Developed by Knowledge and Technology Transfer Group at CFRN.
- Open Software licences not usable (GNU, GPL, ...).

#### Practical: makes it easier to work with others

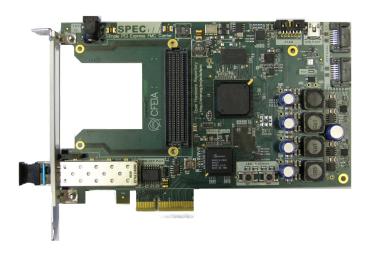
- Upfront clear: anything you give is available to everyone.
- Everyone can use it for free.
- No strings attached. Really!

## CERN Open Hardware License – ohwr.org/cernohl

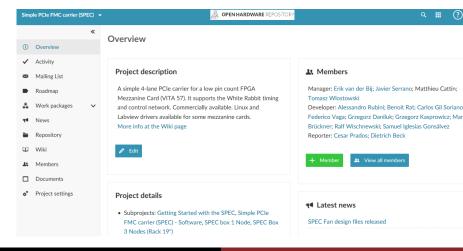
### Same principles as Open Software

- Anyone can see the source (design documentation).
- Anyone is free to study, modify and share.
- Any modification and distribution under same licence.
- Persistence makes everyone profit from improvements.

### Hardware production


Intro to CERN

When produce: licensee is invited to inform the licensor.


## Outline

- Introduction to CERN
- Introduction to Open Source Hardware
- Open Source Hardware in practice
- 4 How to get organised

# Example: SPEC - Simple PCI Express FMC carrier Made in Spain, The Netherlands, Greece & Poland



## Example of a project in the Open Hardware Repository – ohwr.org



OSHW in practice

## Be Open

#### Use OHR to the fullest

- Document everything on OHR:
  - schematics, mechanics, status.
- Discuss over mailing list. Already from start of project.
- Document design review results.
- Track Issues and detected bugs.

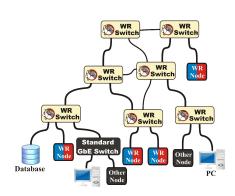
#### Don't be afraid to show mistakes!

- E.g. SPEC: 86 Issues documented, 40 still 'Open'.
- Issues may help others when adapting a design.
- OHR becomes a teaching tool.

## White Rabbit – Innovation with Open approach

Hardcore innovation.

Intro to CERN


- An enabling technology.
- Started at CERN and GSI high-energy physics labs.
- Everything Open: hardware, gateware, software.
- Made extensive use of small companies to develop.
- Companies develop and sell products based on it.

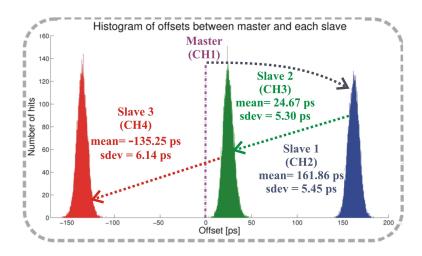
## White Rabbit – is Ethernet

Bandwidth: 1 Gbps

Intro to CERN

- Single fiber medium
- Up to 10 km links
- WR Switch: 18 ports
- Ethernet features (VLAN) & protocols (SNMP)
- Synchronization:
  - accuracy better than 1 ns
  - precision (tens of ps sdev skew max)




## WR time transfer performance: lab tests

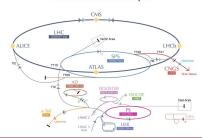
3 cascaded switches



## WR time transfer performance: lab tests

3 cascaded switches




## White Rabbit applications

Particle accelerators

Intro to CERN

- CERN (Switzerland/France)
- GSI (Germany)

#### CERN's accelerator complex



## White Rabbit applications

Particle accelerators

Intro to CERN

- CERN (Switzerland/France)
- GSI (Germany)
- Cosmic ray & neutrinos detectors
  - LHAASO (China)
  - HiSCORE (Siberia)
  - KM3NET (Mediterranean)
- Metrology laboratories
  - MIKES (Finland)
  - VSL (Netherlands)

### **Dutch Metrology Institute**



**All users:** www.ohwr.org/projects/white-rabbit/wiki/WRUsers

## How can this map to your project?

What could be your "killer app"?

## **Business models**

Dispelling the commercial vs open myth

|             | Commercial                                   | Non-commercial                                             |
|-------------|----------------------------------------------|------------------------------------------------------------|
| Open        | Winning combination.<br>Best of both worlds. | Whole support burden falls on developers.<br>Not scalable. |
| Proprietary | Vendor lock-in.                              | Dedicated<br>non-reusable projects.                        |

## Where the rubber meets the road

Eight years of experience at CERN



## Free-as-in-freedom design tools

The last hurdle to efficient sharing - kicad-pcb.org



Example: similar case in the Quantum Engineering community?


### Tools should be free and open to be able to share

- Simulation tools
- Control software
- Data processing tools
- Quantum Information Software

Intro to CERN

## Hardware for quantum engineering projects

Duplication of effort: different labs build similar equipment



slide courtesy of G.Kasprowicz

## Quantum engineering project: Sinara

Open source hardware for quantum applications

### Sinara - github.com/m-labs/sinara/wiki

- Open-source hardware ecosystem designed for use in quantum physics experiments running ARTIQ control software.
- All design files, sources, mechanics, documentation published.
- Project shared under OHL, managed using github.

#### International collaboration

- Institutes: NIST Boulder, UMD, ARL, Warsaw WUT, Oxford University, Uni Hannover, PTB
- Industry: Mlabs, Quartiq, Creotech, Technosystem

### Sinara hardware Licenced under CERN OHL

Intro to CERN

- DDS (MTCA octal 2.4GS/s, Eurocard quad 1GS/s). Flexible analog front-ends
- ADC (MTCA octal 125MS/s, Eurocard octal 1MS/s)
- DAC (MTCA, Eurocard 32channel)
- Digital IO (BNC, SMA, LVDS)
- Deterministic real time controller (sub ns)
- Slow control VHDCI breakout
- Camera Link.
- Clock distribution
- 8 channel RF amplifier for AOM
- Many other modules in development (Piezo drivers, HV supplies, temperature controllers, magnetic field stabilisers)
- Control software (ARTIQ:https://m-labs.hk/artiq/) written mostly in Python including FPGA HDL, GPL



Open source hardware for quantum applications

### Easy Φ - easy-ph.ch

- Easy Φ is a platform aiming at physicists.
- Developed for the needs of quantum optics, usable for applications in physics or biology.
- Open standard platform.

## Single institute, but Open

- University of Geneva
  - Group of Applied Physics in Optics

- Dual High-Speed Universal Input
- Dual High-Speed Universal Output
- Dual High-Speed Delay Line
- High speed coincidence
- Thermocouple temperature measurement
- Optical amplitude modulator
- ...



Intro to CERN

- 1 Introduction to CERN
- Introduction to Open Source Hardware
- Open Source Hardware in practice
- 4 How to get organised

## Public institutions

## They serve the interests of a whole society

- Try to maximise positive impact of decisions.
- Not always easy.

### Public institutions

### They serve the interests of a whole society

- Try to maximise positive impact of decisions.
- Not always easy.

### Can be "tractor" institutions

- To help take projects to a mature state where they can be sustained commercially.
- Liaising with other public institutions to reach critical mass.
- Also with their procurement hat.

## The funding agencies conundrum



## Issues with "coopetition"

Research groups sometimes end up behaving as private companies (but with public money!) because of wrong incentives by funding agencies.

## The power of getting organised

Look at Open Hardware, Open Access... even CERN itself! These things looked highly improbable before people got organised to make them happen.

## Check out zenodo.org!

### Why?

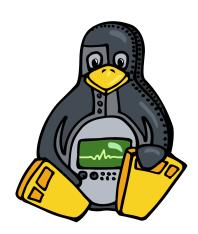
- Science cannot be open without open data ...
  - ... and software and hardware
- Avoid double pay for tax payers
- Makes sharing research very easy!

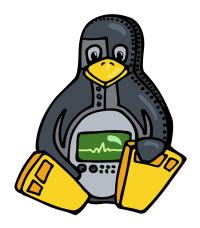
## Check out zenodo.org!

### Why?

Intro to CERN

- Science cannot be open without open data ...
  - ... and software and hardware
- Avoid double pay for tax payers
- Makes sharing research very easy!


#### How?


- Open attitude from day 1
- Communities of interest in Zenodo
- Involving key commercial and non-commercial actors from the start

## OpenX

How to get organised

- Open Hardware
- Open Software
- Site to collaborate
- Coordination
- Need for a "Tractor" institution?



