

Overview of CNM LGAD results with B, Ga and C diffused Si-on-Si and epitaxial wafers

Lucía Castillo García on behalf of IFAE pixel group and CNM - 9th September 2021

Outline

- Motivation
- Radiation damage
- CNM LGAD technologies (Si-on-Si and low resistivity epitaxial wafers)
- LGAD performance
 - Electrical characterization (IV/CV)
 - $\,\circ\,$ Auto-triggering measurements \rightarrow define operating voltages
 - $\,\circ\,$ Beta source measurements for single pad sensor
 - Collected charge
 - Time resolution
 - Transient Current Technique (TCT) measurements
 - Inter-pad (IP) gap on 2×2 LGAD arrays
 - Gain on single pad sensors
- Summary and outlook

L. Castillo García

Motivation

Low Gain Avalanche Diode (LGADs) sensors

- Originally developed by CNM to explore the possible improvement towards radiation hardness (through charge multiplication)
- Later proposed for timing applications
 - Achieving a time resolution of about 30 ps before irradiation
- Interest to study LGADs and their performance at high fluences beyond 10¹⁵ n_{eq}/cm²
 - Performance remains challenging due to degradation of the gain layer
 - o Investigate new doping materials (B, Ga), substrates and new geometries
 - Deliver thin sensors providing good time resolution, fine segmentation, radiation hardness
- ATLAS and CMS experiments have chosen the LGAD technology for the High Granularity Timing Detector (HGTD) and for the End-Cap Timing Layer (ETL)
 - ATLAS : 4 fC at 2.5×10^{15} n_{eq}/cm² at (max) 600 V, 50 ps time resolution (talk)
 - \circ CMS : 10 fC at 1.5×10¹⁵ n_{eq}/cm² at (max) 600 V, 50 ps time resolution (<u>talk</u>)

3

Radiation damage

- Silicon pixel detectors are especially important for the precise determination of tracks and vertices, enabling the selection of interesting events through the identification of b-jets (b-tagging)
- Particle accelerators are improved to further probe the energy frontier delivering higher energies and increasing the number of collisions per unit time
- At High Luminosity LHC (HL-LHC):
 - The number of collisions per bunch crossing will be increased
 - The instantaneous luminosity will be approximately a factor of ~5 higher than the LHC nominal values
 - Several LHC experiment sub-systems will require an upgrade in order to cope with the high rate, hit occupancy and radiation environment
- Two main types of radiation damage:
 - Bulk damage due to Non Ionizing Energy Loss (NIEL)
 - Effective doping concentration, acceptor removal, leakage current, trapping
 - Surface damage due to lonizing Energy Loss (IEL)
 - Accumulation of positive charge
- New solutions have to be found for the silicon sensors and the associated front-end electronics

CNM LGAD technologies

CNM Run 10478 B, B+C, 10924 Ga (2017-2018)

- $\,\circ\,$ 50 μm active thickness
- o 4" Si-on-Si wafers
- W4 B: $V_{gl} \sim 38V$, $V_{fd} \sim 42V$, $V_{bd} \sim 130V$
- W5 B+C: $V_{gl} \sim 38V$, $V_{fd} \sim 42V$, $V_{bd} \sim 110 - 140V$
- **W6 Ga:** $V_{gl} \sim 32 - 64V, V_{fd} \sim 40 - 80V, V_{bd} \sim 140V$

Gain

 \circ Expected gain higher than 20

 B dose: 1.5×10¹³ at/cm²

• Ga dose: 6×10^{13} at/cm² talk@30th and talk@32nd RD50 Workshop

• CNM Run 12916 AIDA2020

- $\,\circ\,$ 50 μm active thickness
- Si-on-Si wafers
- $\circ V_{gl} \sim 38V, V_{fd} \sim 42V, V_{bd} \sim 85V$ at room temperature
- \circ B dose: I.8×10¹³ at/cm²

CNM Run 13002 EPI (2021)

- 6" epitaxial wafers
- \circ 55/525 μm
- \circ Substrate resistivity = 0.001-1 Ω cm
- $\,\circ\,$ Epi-layer resistivity ~ 200 Ωcm

Electrical characterization Unirradiated (I-V room temperature) devices 10⁻⁴ 10⁻⁴ - W4 S104 10 W5_S1013 W5_S1077 W5_S1100 ---- DB28 W4 S1045 V_{bd} - W4 S1008 - DB32 10⁻⁵ W5_S1116 10⁻⁵ - \A4 S1006 10-5 W5_S1037 W4 S1085 ---- DB33 W5_S1038 varies W5_S1039F W5_S1075 W5_S1076 W5_S1078P W5_S1100 🗕 DB34 10⁴ A4 S1083 10⁻⁶ 10⁻⁶ Current (A) - DB37 W4 S1005 a lot A4 S1002 🔶 DB39 W5_S1114 Current (A) 10 W5_S1115 AM_S1078 10-7 - Pin 10⁻⁷ W5_S1117F A4 S1114 - W5_S11036 ---- DB35 10 🔶 DB38 10⁻⁸ 10-6 10⁻⁹ 10⁻⁹ 10⁻⁹ **10⁻¹⁰ 10**⁻¹⁰ **10**⁻¹⁰ 10⁻¹¹ **Boron + Carbon** Boron **10**⁻¹¹ 10⁻¹² 10⁻¹ 80 100 120 140 160 180 200 40 60 20 80 100 120 0 20 40 60 140 **AIDA2020** 0 Voltage (V) 10⁻¹² Voltage (V) 20 60 40 80 100 10-4 Reverse Bias (V) High current due 100µ W2_N18.6 10⁻⁵ W2_N18.8 to multiplication 10µ W3_N09.4 Current (A) 10-6 W3 N09.7 1µ · W4_N09.1 W4_N09.2 100n 10-7 - W4_N09.9 (PIN) ٩ 10n W6_S1013 10⁻¹ - W6_S1028 mannin 📥 W6 S1033 10^{-€} 100p -W6_S1035 -W6_S1074 10p 10⁻¹⁰ EPI Gallium 1p 0 50 100 150 200 250 300 350 400 450 500 25 50 75 100 125 150 Workshop on Pico-second Timing Detectors for Physics 9th September 2021 Voltage (V) V (V) L. Castillo García 6

Current (A)

Electrical characterization (C-V room temperature)

Unirradiated devices

Electrical characterization (I-V -30 °C)

Irradiated devices

8

 Sensor close to breakdown after depletion

Operational voltage

- The limitation on operating voltages is given by auto-triggering studies
- LGADs at high bias voltages present self pulses (w/o external source)
- We need to make sure that a coincidence event from both tested sensors is a real one, not a fake → need to ensure sensor is not auto-triggering
- Auto-triggering events have waveforms that are identical to real events
- Estimate the frequency of these events
- Trigger on different threshold values for different bias voltages (here only showing 10 mV~5 σ_{noise})
- Maximum voltage with an acceptable auto-triggering rate of 1 kHz
- Subsequent measurements are taken up to bias voltage without auto-triggering

L. Castillo García

Auto-triggering studies

16 AIDA7

W1DB08 1e14n

W1DB06 1e15n

500

600

700

Bias Voltage [V]

400

W1DB05 6e14n

CNM Run 129

ੇ ਦ

Autotriggering rate []

10000

5000

W1DB07 unirrad

W1DB04 6e14n

W1DB33 2.5e15n

 $T = -30^{\circ}C$

- B+C sensors seems to start autotriggering before than B and Ga sensors
- Neutron irradiated sensors has lower acceptor removal than proton which leaves more of the gain layer available
- Unirradiated sensor present a high auto-triggering rate at low voltage which hinders operating it at cold temperature

300

Only marginal performances can be achieved before irradiation

CNM Run 13002 EPI

- All the fluences present enough room to operate between V_{gl} and V_{bd}
- No detectable auto-triggering up to 770 V for 10¹⁵ n_{eq}/cm² and up to 720 V for 10¹⁶ n_{eq}/cm² but high current, not possible to go higher in voltage

100

200

Charged particle measurements

• Set-up

- ⁹⁰Sr source, custom read-out boards, oscilloscope
- $\,\circ\,\,$ Temperature control down to -30 $^\circ C$ with climate chamber
- Avoid condensation by providing dry air

• Measurements:

- \circ Collected charge
- \circ Time resolution

LGAD analysis framework

- Waveform processing performed with LGADUtils framework vI.0 (C++ based) developed at IFAE by E.L. Gkougkousis (documentation, gitlab)
- Steps: .
 - Conversion oscilloscope ASCII/binary data to Root ntuple with raw waveform information
 - Merging with track ntuple from EUTelescope (in test beam)
 - Waveform analysis
 - Determination of pulse polarity, signal start and stop, determine if the pulse is noise or signal
 - Calculate noise level and pedestal using Gaussian fit, pedestal subtraction, re-calculation of start and stop of the signal
 - Compute charge, rise time, time at different CFD fractions, ...
 - User analysis
 - Efficiency
 - Timing _

LGAD collected charge

- At each bias voltage point:
 - For each recorded waveform (event), after pedestal substraction, the charge is calculated as the integral of the LGAD signal area
 - \circ A charge distribution is built
 - The collected charge is defined as the MPV value of the Landau-Gauss fit

Collected charge

-+- W1DB05 6e14n

600

700

Bias Voltage [V]

ਹੁ 35 <mark>≍10⁻¹⁵</mark>

ge |

ਤੌਂ 30

25

20

15

10

0 0

 $T = -30^{\circ}C$

Uniradd

🔶 1e14n

- 1e15n

🔶 1e16n

Internet and the

600

700 800 Bias Voltage [V]

- C sensors have larger charge collection than B and Ga at the same bias voltage
- C helps to diminish the effect of gain reduction with irradiation
- Although B+C sensors start auto-triggering earlier in voltage than other doping
 - This make them not operable at higher voltages
- More on gain studies for B, B+C, Ga in Vagelis' talk

- Unirradiated sensor results are biased by the high auto-triggering rate
 - Not enough room to operate the sensor at -30°C
- $2.5\times10^{15}~n_{eq}/cm^2$ irradiated sensors reach 4 fC for bias voltage higher than $680\,V$
- Up to $10^{14} n_{eq}/cm^2$ irradiated sensors a high collected charge (>10 fC) is achieved

200

100

For $10^{15} n_{eq}/cm^2$ irradiated sensor 4 fC is reached at BV>700 V

300

400

500

CNM Run 13002 EPI

- No detectable gain for 1e16 n up to 720V
- Foreseen tests of intermediate fluences $(5 \times 10^{14}, 8 \times 10^{14}, 2 \times 10^{15}, 3 \times 10^{15} \text{ and } 5 \times 10^{15} \text{ n}_{eq}/\text{cm}^2)$

L. Castillo García

LGAD time resolution (ref. LGAD)

- Time walk effect due to signals with different amplitude reaching a single discriminator threshold is corrected using Constant Fraction Discrimination (CFD) method
- Find optimal CFD fraction achieving the minimum time resolution for the reference LGAD
 - Build a 2D map of time resolution as a function of the CFD fractions (f_{CFD}_{DUT1} , f_{CFD}_{DUT2})
 - Time difference distribution calculated as:

 $\Delta t = t_{DUT1(f_{CFD_i})} - t_{DUT2(f_{CFD_j})}$

- Time resolution is defined as $1/\sqrt{2}$ the standard deviation of the Gaussian fit
- Reference LGAD calibrated in the lab at -30 °C
 - Best time resolution achieved is 35.7 ps for $f_{CFD_{ref}} = 15\%$

discriminator

LGAD time resolution (DUT)

fcFD DUT [%] 00 06 06

70

60

50

40

30

20

10

0

- Find optimal CFD fraction achieving the minimum time resolution for the DUT
 - Build a 2D map of time resolution as a function of the CFD fractions (f_{CFD}_{DUT} , $f_{CFD}_{ref LGAD}$)
 - Time difference distribution calculated as:

$$\Delta t = t_{DUT(f_{CFD_i})} - t_{ref \ LGAD(f_{CFD_j})}$$

- Time resolution is defined as:

$$\sigma_{DUT} = \sqrt{\sigma_{fit}^2 - \sigma_{ref \ LGAD}^2}$$

- $\,\circ\,$ Fraction defined by the dominant contribution
 - Unirradiated sensor \rightarrow Landau fluctuations of charge deposition
 - Irradiated sensor \rightarrow jitter (higher threshold)

16

Time resolution

 $T = -30^{\circ}C$

CNM Run 10478 B, B+C, 10924 Ga CNM Run 12916 AIDA2020

° 90

80

60 E

40

30 E

20 🗄

10

- Achieved time resolution better than 50 ps
- B and B+C are similar in time performances
- Ga achieves a worse time resolution due to the high leakage current
- Unirradiated sensor cannot be operate at higher voltage due to auto-triggering, marginal performances in timing
- Irradiated sensors achieve a time resolution lower than 40 ps at all level of neutron irradiation
- A time resolution < 50 ps is achieved for sensor irradiated up to 10¹⁵ n_{eq}/cm²

CNM Run 13002 EPI

- A plateau-like around 43 ps is reached for this fluence
- For 10¹⁴ n_{eq}/cm² the measured time resolution is below 40 ps

Time resolution vs Collected charge

 $T=-30^{\circ}C$

- LGADs exposed to neutron fluence up to $2.5 \times 10^{15} n_{eq}/cm^2$ and to proton fluence up to $6 \times 10^{14} n_{eq}/cm^2$
- A charge of 4 fC can be reach up to a fluence of 2.5×10¹⁵ n_{eq}/cm², providing a time resolution better than 70 ps per hit
- The performance of LGADs from all three technologies is similar
- The time resolution for the largest fluence is fully dominated by the electronics jitter

L. Castillo García

Transient Current Technique (TCT)

Set-up:

- Time-resolved current waveforms introduced by drift charge inside a sensor
- Current proportional to the number of charges, drift velocity and weighting field of the readout electrode
- \circ Pulsed laser source (spot size = 10 μ m) mimics the behavior of a charged particle
 - Red ($\lambda_1 = 640 \ nm$) and Infra-Red ($\lambda_2 = 1040 \ nm$)
- Possibility to perform room temperature and cold measurements (till -20 °C)
 - Cooling system with Peltier + Chiller
 - Dry environment
- LGAD assembled in a metal box mounted on the movable X-Y stage
- Set-up is remotely controlled
- o Detector illuminated from the back with IR laser
 - To perform TCT LGADs need to have an opening in the metallization layer
- Aim of measurements:
 - Compare behaviour before and after irradiation
 - Gain for single pad devices
 - IP gap for 2×2 arrays

Schematic and read-out: single pad

- Sensor is biased from the top side with POSITIVE voltage, this is possible due to the presence of the BIAS-T element
 - DC input is used for bias voltage
 - $\circ~$ RF output is sent to amplifier and then to the scope
 - $\circ~$ RF+DC in/out is used for the connection with the sensor
- Illuminated with IR lased on the backside
- CIVIDEC amplifiers present a gain of 100
- Average of 1000 waveforms are collected from DRS oscilloscope

B and Ga results: Gain

$T = -20^{\circ}C$

- Measurements for B and Ga doped LGADs up to 10¹⁵
 - p and n irradiation
 - B+C LGADs metalized on the back, no possibility to measure them
- Infra-Red laser shot on the back of the sensor
- Gain is computed as: $G = \frac{Q_{DUT}}{\langle Q_{pin} \rangle}$ for each bias voltage point
 - $\circ Q_{DUT}$ is the collected charge obtained by the integration of waveform signal on the DUT
 - $\circ < Q_{pin} >$ is the averaged collected charge obtained for the device with no multiplication (PIN) with the same size
- Boron LGADs show more gain than Gallium ones at the same bias voltages, in agreement with beta source results

AIDA2020 results: IP gap

- Measure IP gap by scanning the area between two pads
 - Record Ik waveforms for each X-Y position
 - Pad A and B are readout through two different lines
 - Build a 2D map of collected charge as a function of the laser position
 - Make projection for each pad and fit it with an S-curve
 - IP is defined as: $IP \ gap = |x_{A \ 50\%} x_{B \ 50\%}|$

 $T = -20^{\circ}C$

22

- Unirradiated sensor not operable ightarrow high current and early breakdown
- Low fluences
 - Carriers generated underneath the gain layer end their drift on JTE and don't undergo multiplication
- High fluences (>6×10¹⁴ n_{eq} /cm²):
 - \circ $\,$ Some gain from carriers drifting to the JTE, a smaller IP has been measured $\,$
 - The IP gap is larger at higher bias voltages
- Results are compatible with previous results on LGADs from other vendors (<u>slides@38th RD50 Workshop</u>) and in agreement with their simulation

Epi results: Gain and time resolution

- Gain is computed as: $G = \frac{Q_{DUT}}{\langle Q_{pin} \rangle}$ for each bias voltage point
 - $\circ Q_{DUT}$ is the collected charge obtained by the integral of the signal from the DUT
 - $\circ~< Q_{pin} >$ is the average collected charge obtained for the device with no multiplication (PIN)
- Gain I = 0.569 fC
 - $~\circ~$ MIP \rightarrow 67 e/h pairs/µm in silicon low doped x 53 µm

- Laser signal is split, one is delayed by 50 ns and then both are combined
- Time difference is calculated at different CFD fractions for 1000 events for each voltage point
- Intrinsic time resolution of the LGAD is $\sigma_{DUT} = \frac{\sigma_{fit}}{\sqrt{2}}$
- Minimum time resolution as a function of the reverse bias
- Results aready presented to RD50 community: <u>slides@38th RD50</u> <u>Workshop</u>

L. Castillo García

23

 $T=-20^{\circ}C$

Summary and outlook

Boron, Boron + Carbon and Gallium doping (Run 10478 W4 & W5, Run 10924 W6)

- **Carbon** seems to help to maintain gain after irradiation
 - However, in this first run with Carbon, we suspect it was diffused out of the multiplication layer and the benefits are not clear
 - But good control of C implantation critical
- Gallium presents 20% less gain and acceptor removal wrt Boron, but requires better diffusion techniques
 - Ga disfavoured due to poorer radiation hardness and timing performances
- LGADs have been also tested in test beams (2018-2019) and a paper with results is in preparation

• AIDA 2020 Boron (Run 12916)

- Unirradiated LGAD does not show enough room to operate between V_{al} , V_{fd} and V_{bd} voltages and early breakdown
- \circ Good performances in collected charge and time resolution achieved for fluences up to $2.5 \times 10^{15} n_{eq}/cm^2$
- Epitaxial Boron (Run 13002)
 - Unirradiated LGADs show enough room to operate between V_{gl} , V_{fd} and V_{bd} voltages and low auto-triggering rate
 - LGADs irradiated to a fluence of 10¹⁵ n_{ed}/cm² work but at relative high bias (700 V), due to low gain and low resistivity of wafer
- Next steps
 - A new common ATLAS/CMS run will be ready by the end of this year
 - Epitaxial run with C implanted in the gain layer on some wafers

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754510

Detection technology: LGAD

- Low Gain Avalanche Detectors (LGADs) originally developed by CNM
 - o n-p silicon planar detector + multiplication layer that amplifies the signal
 - High E field
 - Moderate internal gain (10-50)
 - \circ Typical rise time 0.5 ns
 - Excellent time resolution <30 ps before irradiation
- R&D programme to deliver thin sensors to provide the required time resolution (30 ps per track), fine segmentation, radiation hardness
 - New doping materials, substrates and new geometries
 - Prototypes tested from CNM, HPK, BNL, FBK

CNM LGAD for HGTD

HPK LGAD for HGTD

Why timing is so important?

- High-Luminosity phase of LHC (HL-LHC)
 - $\,\circ\,$ Instantaneous luminosities up to $L\simeq 7.5\times10^{34}\,cm^{-2}\,s^{-1}$ (×5 current $L_{inst})$
 - Luminosity = number of collisions in a detector per cm^2 and per second

- Pile-up: $< \mu > = 200$ interactions per bunch crossing \rightarrow 1.5 vertex/mm on average
- Vertex reconstruction and physics objects performance will be significantly degraded
- \circ Push to higher luminosity \rightarrow timing is more and more important
 - Using timing information easier to reconstruct vertices

Basic principles

- Study on proton and neutron irradiated CNM LGADs
 - Boron implanted (R10478W4)
 - Boron implanted + Carbon enriched (R10478W5)
 - Gallium implanted (R10924W6)
- We need to make sure that a coincidence event from both tested sensors is a real one, not a fake \rightarrow need to ensure sensor is not auto-triggering
- Trigger on different threshold values for different bias
 Voltages (here only showing 10mV)
- No radioactive source or other source of events
- Collect at least 1k events and estimate period (frequency)
- Noise events have waveforms that are identical to real

events

L. Castillo García

28

Preliminary results

- Beta source set-up
 - DUT:W6S1080 6e14 p @-560 V (-30 C) \rightarrow data taking until -700 V
 - Ref:W4S1022 unirradiated @-80V (-30 C)

Contributions to timing

• Time resolution:

-

- $\,\circ\,$ Landau term <25 ps
 - Reduce for thin sensors: 35-50 μ m
- $\,\circ\,$ Jitter term <15 ps and time walk term <10 ps
 - Low noise and fast signals
- $\,\circ\,$ Digitization granularity ~5 ps
- $\,\circ\,$ Clock distribution <15 ps
- Time walk corrections on beam test data using the Constant Fraction Discriminator (CFD) technique
 - Considering the time at a fraction of 50% of the amplitude (typical fraction is 20%)

$$\sigma_{tot}^2 = \sigma_{Landau}^2 + \left(\frac{t_{rise}}{S/N}\right)^2 + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^2 + \left(\frac{\text{TDC}_{bin}}{\sqrt{12}}\right)^2 + \sigma_{clock}^2$$

0.1 0.2 0.3 CFDTime20[0]-CFDTime20[1]

-0.3

-0.2

-0.1

-0.4

Assembly Sensor + Readout board

Workshop on Pico-second Timing Detectors for Physics 9th September 2021

Schematic and read-out: 2x2 arrays

- Sensor is biased from the top side with POSITIVE voltage, this is possible due to the presence of the BIAS-T element
 - DC input is used for bias voltage
 - RF output is sent to amplifier and then to the scope
 - RF+DC in/out is used for the connection with the sensor
- o Illuminated with IR lased on the backside
- CIVIDEC amplifiers present a gain of 100
- Average of 1000 waveforms are collected from DRS

oscilloscope

Data analysis tools

- Track reconstruction performed with EUTelescope software v01-19-02 using GBL algorithm
 - Requiring one hit in FE-I4 plane \rightarrow resulting in ~30% of total events with an average FE-I4 efficiency of 99.6%
- Waveform processing performed with LGADUtils framework vI.0 (C++ based) developed at IFAE by V. Gkougkousis (<u>https://indico.cern.ch/event/782573/#preview:2889703</u>)
 - Match event information between telescope and oscilloscope discarding events without FE-I4 hits

L. Castillo García

LGAD pulse properties

LGAD pulse properties

LGAD collected charge

- Charge calculated as the integral of the signal area for each recorded waveform after pedestal substraction
- At each voltage point the collected charge is given by the MPV value of the Landau-Gauss fit of the events charge distribution

LGAD time resolution

Timing distribution calculated as the difference between the time at f_{CFD}=50% for DUT and the time at f_{CFD}=20% for the unirradiated reference sensor

 $\Delta t = t_{DUT(f_{CFD}=50\%)} - t_{LGA35(f_{CFD}=20\%)}$

- Fraction defined by the dominant contribution
 - unirradiated sensor ightarrow Landau fluctuations
 - Irradiated sensor ightarrow jitter (higher threshold)
- The time difference distribution is fitted with a Gaussian with the time resolution of the system defined as the σ of the Gaussian
- At **740 V**
 - **Time resolution** is **48 ps (**<70 ps requirement)
 - The contribution of the reference sensor is subtracted (29.7 ps at -28 °C)

Workshop on Pico-second Timing Detectors for Physics 9th September 2021

Radiation hard studies results in Gregor's talk at this workshop

Centro Nacional de Microelectrónica Instituto de Microelectrónica de Barcelona

GUU

ESIC

AIDA2020 IP gap

