LAPPD as a timing layer for the LHCb ECAL in Upgrade2

Stefano Perazzini

On behalf of the LHCb ECAL Upgrade II R&D Group

Workshop on picosecond timing detectors for physics – Zurich, 11th September 2021

Outline

- General introduction on current ECAL and plans for a timing layer for LHCb ECAL-U2
- The Large Area Picosecond PhotoDetector (LAPPD)
- Results of tests conducted on two LAPPDs
 - Laboratory tests with pulsed laser
 - Results at DESY beamtest facility
- Wrap-up and conclusions

Current and future ECAL

- Large array of shashlik cells optimised for π⁰, γ and e[±] in the few-GeV up to 100-GeV region at L = 2 x 10³² cm⁻²s⁻¹
 - Radiation tolerance up to 40 kGy
 - Three regions with different cell size: 4x4, 6x6, 12x12 cm²
 - Energy resolution: $\frac{\sigma(E)}{E} \approx \frac{10\%}{\sqrt{E}} \bigoplus 1\%$
- ECAL will be rebuilt during LS4 with radiation tolerant modules and refurbished old modules
 - Instantaneous luminosity up to 1.5 x 10³⁴ cm⁻²s⁻¹
 - Total integrated dose up to 1 MGy and 6 x 10¹⁶ 1Mev neq/cm²
 - Increase granularity to cope with occupancy
 - Use time information to discriminate pp collisions with resolution of O(10) ps

A timing layer for the LHCb U2

Place a thin detector based on MCP-PMT between two sections of double readout sampling calorimeter split at the shower maximum to sample the secondary particles produced in EM showers

Why Microchannel plates

- A microchannel plate (MCP) is an array of miniature electron multipliers
 - Typical diameters (d) of micropores in the range 6-25 μm, with thickness (L) of 0.4-1 mm
 - Very large S/N thanks to gain of O(10³) for single MCP
 → excellent time resolution
- Original idea to use them for sampling EM showers dates back to the '90s
 - A. I. Ronzhin et al., IFVE 90-99, Protvino, 1990
 - Recent work focused on Phase-2 HL-LHC upgrades
 - → A. Bornheim , A. Ronzhin et al.;
 - → A. Barnyakov, M. Barnyakov, T. Tabarelli de Fatis et al.
- Large number of secondary particles in the shower improves detection efficiency
 - Possibile to avoid using a photocathode
 - → primary electrons produced by ionisation inside the MCP
 - → great reduction of costs and assembly complexity
- But need to withstand emitted charges up to hundreds of C/cm²

The Large Area Picosecond PhotoDetector

- Developed by the LAPPD collaboration and commercialized by Incom Inc.
- MCP wafers made of commercial borosilicate glass with atomic layer deposition (ALD) of resistive and emissive layers
 - ALD enhances emissivity and is also predicated to prolong lifetime of the device
- Pore sizes of 10-20µm
- Largest MCP-PMT available on the market
 - wafer sizes up to 20x20 cm²

Two LAPPD versions

Gen-I: Direct read-out with strip-line anode with ~1 mm spatial resolution

- Received both versions
 - Both with a stack of 2 MCPs with 20 μm pore size
 - Intensive test program conducted in the laboratory with pulsed laser
 - Two beamtest conducted at DESY with 1 5.8 GeV electron beam
 - → LAPPD inserted between front and back section of LHCb ECAL-U2 prototype

Gen-II: Resistive interior anode with capacitively coupled external anode PCB with customizable pixel pattern More suitable for high-occupancy environment

Laboratory tests

Experimental setup

translations

Experimental setup

- Laser system
 - − PICOPOWERTM-LD by ALPHALAS
 - Class 3B with 405 nm wavelength
 - Repetition rate tunable from 1 Hz to 50 MHz (in steps of 1 Hz)
 - Pulse width with optimal settings measured at the factory before shipment 11.7 ps (RMS)
 - Trigger jitter measured in the lab to be 3.4 ps
- Digitiser CAEN v1742
 - VME board with 32 channels based on the DRS4 chip
 - Maximum sampling rate is 5 GS/s with 1024 cells per channels (full acquisition window of 204.8 ns), and
 500 MHz bandwidth
 - Unsatisfactory factory calibration → thoughroughly calibration perfomed in the lab based on
 D. Stricker-Shaver et al. IEEE Trans. Nucl. Sci. 61 (2014) 3607 with a small modification (not discussed here)

CAEN digitiser v1742

Digitiser calibration

- Voltage offsets calibration
 - Injected into each channel a set of constant voltages
 - Use a linear fit to parameterise the correspondence between voltage and the average or registered ADC counts for each cell of each channel
- Local calibration of cells time widths
 - Injected into each channel 50 MHz saw-tooth waveform
 - Exploit linear correlation between voltage difference and time difference of two adjacent cells
- Global calibration of cells time widths
 - Injected into each channel a 100 MHz sinusoid waveform
 - Measure the time difference between zero crossings for one or multiple periods, and use this difference to correct the time widths of all intermediate cells

Goodness of calibration

- Calibration check is performed with a signal split test
 - A rising edge is generated via waveform generator, split in two and sent to two distinct channels of the board
 - One of the two signals is also delayed wrt the other via a longer cable
 - Effect of small miscalibrations of cells widths adds up for signals separated in time
 - Difference between the two signals is used to determine time resolution

LAPPD Gen-I

Reminder: anodic strip readout

LAPPD Gen-I: single PE signals

108

ns

106

LAPPD Gen-I: single PE time resolution

- Long tail due to photoelectrons backscattering in the interstices between pores on the surface of the MCP, then landing again on the MCP after some time
 - Not present when operating with inhibited PC
- Time difference with respect to trigger is modeled with gaussian plus explonential tail convolved with gaussian
- Different settings of photocathode bias are tested

500F

400F

300

200

100

ns

44.6 44.8 45

- Dependence of σ_{core} from PC bias

t_{strip} - t_{trigger}

PC 50 V

Fraction of

 σ_{core} = 66 ps

backscatters: 8%

300Ē

250

200E

150

100

Increasing fraction of backscattered PE from 8% to 29% with PC bias

t_{strip} - t_{trigger}

PC 100 V

Fraction of

45.6

45.2 45.4

 σ_{core} = 44 ps

backscatters: 19%

46.4

ns

ns

LAPPD Gen-I: single PE time resolution

- Scan of time resolution as a function of MCP bias
 - PC bias fixed to 200 V
 - Optimal MCP voltage around 870 V per MCP
 - Best σ_{core} = 31 ps

MCP voltage (V)

LAPPD Gen-I: expectations for beamtest

- Accurate simulations are used to predict the distributions of PEs produced when the LAPPD is placed at the maximum of an EM shower of 5 GeV electrons (DESY testbeam conditions)
 - Laser is defocused using a lens to reproduce the spatial distribution of PEs from EM shower (15 mm Ø)
- Optimal working point depends on two factors
 - PC bias: influences fraction of backscattering PE but also TTS from PC to first MCP
 - MCP bias: influences gain introducing saturation effects inside the pores
- No trivial interplay between PC and MCP biases
- Not taking into account
 - Large fluctuations of particles in the EM shower
 - Time-spread of particles in the EM shower

LAPPD Gen-I: repetition rate

LAPPD Gen-I: repetition rate

- Test repeated with two different MCP-PMT without any particular optimisations
 - \rightarrow Photonis Planacon 85012 with 10 μ m pore size
 - \rightarrow LLC Katod UFK-5G-2D with 6 μ m pore size
- Incom alredy produce LAPPD equipped with MCP with 10 μ m pore size

Reminder: Resistive interior anode with capacitively coupled external anode PCB with customizable pixel pattern

LAPPD Gen-II: single photoelectron

- Two-dimensional voltage scan is performed for both PC bias and MCP bias
 - Test performed illuminating the centre of one of the pixels
 - 200 V between MCPs and between bottom MCP and anode
 - Dependence of σ_{core} from PC bias

LAPPD Gen-II: backscattering PEs

- Region with backscattered PE is mostly populated at lower amplitudes
 - The simple interpretation is that when hitting the MCP surface PE lose kinetic energy lowering the secondary electron yield
- Minimum requirement on amplitude removes a lot of backscattering

LAPPD Gen-II: multiple PEs time resolution

- Defocused laser beam is used to reproduce PEs produced by the EM shower for 5 GeV electrons
- As for LAPPD Gen-I, fluctuations in the EM shower are not taken into account
- Note: laser is always pointing in the centre of a pixel

LAPPD Gen-II: effect of pixelated readout

- The finite dimension of pixels (25 mm size) may introduce a TTS in the collection of the signal
 Depending on where PEs hit the PC the time to collect the signal from the pixel may change
- Time resolution is measured for single PE
 - When laser beam is focused and hit the centre of the pixel
 - When laser beam is defocused into a spot with 25mm Ø with the spot centred on the pixel
 - Test repeated with 4 pixels

$$\sqrt{55^2 - 47^2} = 29 \pm 3$$
 ps

Averaging the effect over the 4 pixels, defocusing adds 24 ± 2 ps in quadrature to the focused-beam time resolution

No relevant effect on the mean value of the distribution μ_{core}

LAPPD Gen-II: realistic LHCb-U2 environment

- Simulations are used to reproduce realistic LHCb-U2 conditions
 - An LHCb ECAL module is placed in a region close to the beampipe and the number of charged particles per event entering the LAPPD device is estimated
 - 30 MHz/cm² of charged particles are expected to traverse the LAPPD in central region
- Conditions are reproduced using
 - Green LED with power tuned to produce a rate of 30 MHz/cm² of PEs
 - Defocused laser pulse tuned to reproduce EM shower of electrons with different energies

Laser defocuser

Green-light LED

Same test is also conducted with Katod UFK-5G-2D MCP-PMT

LAPPD Gen-II: realistic LHCb-U2 environment

- Below 80 PEs (roughly 20 GeV), the time resolution degrades very rapidly due to much suppressed signal amplitude
 - E.g., with 20 PEs the amplitude goes from 321 to 6 mV
- Katod UFK-5G-2D suffers much less thanks to smaller pore size (6 μm)
 - Average amplitude for 20 PEs goes from 191 to 24 mV

25

DESY beamtests

Experimental setup at DESY TB24

- SPACAL+LAPPD system can be rotated on the horizontal and azimuthal plane up to 6° with respect to beam direction
- Signals are digitised with the same CAEN v1742 board used in the lab
- Resolution of MCP-PMT timing reference is measured to be 12 ps

e⁻ beam direction (1, 2, 3, 4, 5 and 5.8 GeV)

Some picture of the experimental setup

SPACAL back

SPACAL front

LAPPD Gen-I: time resolution with PC on

- Time resolution obtained after subtracting in quadrature 12 ps for the time reference MCPs (neglecting electronics jitter)
- Best resolution at 5.8 GeV is 18.6 ps
 - Asymptotic term at higher energies is 14.0 ps
 - Consider this LAPPD has only 5% Q.E.
- Configuration with 1°+1° slightly worse

LAPPD Gen-I: time resolution with PC off

- Asymptotic term below 10 ps looks too good → range of energies too short
- Drop of efficiency at lower energies related to fluctuations of the number of charged particles in the EM shower

LAPPD Gen-II: time resolution

Only events with electrons impinging within 5 mm from the nominal centre of a pixel

- Best resolution for PC on is 14 ps
 - LAPPD Gen-II has much higher QE with respect to Gen-I → 30% vs 5%
 - Time resolution is dominated by time spread of electromagnetic shower
- Best resolution with PC off is slightly below 30 ps
 - Additional spread due to fluctuations in the number of charged particles in the shower
 - Additional uncertainty in the position of first emitted electrons inside the MCP

Wrap-up and conclusions (I)

- A lot of work is being conducted to explore the possibility of building a timing layer with O(10) ps precision for the LHCb-U2 ECAL
 - The idea consists in placing a detector based on MCP between two sections of double readout sampling calorimeter split at the shower maximum
 - Sampling the secondary particles produced in EM showers will allow to measure time of arrival of γ and e^{\pm} on the ECAL surface with the necessary precision
- The LAPPD detector produced by Incom has been identified as a promising solution
- Two LAPPDs have been extensively tested in the laboratory laser beam and at the DESY beamtest facility with high-energy electrons
- Laboratory studies indicate that working in high-rate environments will degrade the timing performances of LAPPD
 - Better performances are expected operating with MCPs with smaller pore sizes
 - Studies now being conducted with first 10 μm tiles

Wrap-up and conclusions (II)

- Results from beamtest conducted at DESY are encouraging but ultimate precision with PC off calls for improvements
 - Plenty of improvements still possible with an LHCb-optimised layout of the LAPPD
 - Reducing pore sizes from 20 to 10 μm and MCP thickness will improve on time spread with PC off
 - Adding a further MCP wafer to the stack can also be helpful
- New LAPPD with 10 µm pore sizes just arrived in the lab
 - Will undergo an intensive testing program with laser beam and later with particle beam at the CERN SPS in November (higher energies than DESY)
- Our warmest acknowledgments to Incom Inc. and Henry Frisch for their support, availability and guidance

