WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS

Contribution ID: 59 Type: not specified

A comparative study of LGAD radiation damage mechanisms

Aiming to a sub 30 psec time resolution at fluences in excess of 6×10^{15} 1 MeV n_{eq}/cm^2 , several dopants are explored to improve radiation tolerance of intrinsic gain sensors. Using a common mask, CNM produced LGADs with boron, boron + carbon and gallium implanted gain layers are subjected to neutron and proton irradiation ranging from 10^{14} to 6×10^{15} 1 MeV n_{eq}/cm^2 on both particle species. A systematic study of acceptor removal, gain reduction and timing performance is presented at different temperatures ($-10^{\circ}C$, $-20^{\circ}C$, $-30^{\circ}C$). Charge collection, relative efficiency, signal shape and noise analysis are also addressed, using charged particles in a laboratory setup. Three different approaches are used to individually evaluate different mechanisms of radiation damage and their effect on sensor performance, with a distinction between bulk and gain layer effects. Finally, stability is evaluated via dark count rate, which combined with efficiency, determines the sensor's operatable region and it's evolution with radiation.

 $\textbf{Primary authors:} \ \ \text{Dr GKOUGKOUSIS, Vagelis (CERN); CASTILLO GARCIA, Lucia (IFAE-Barcelona (ES)); COCO, \\$

Victor (CERN)

Presenter: Dr GKOUGKOUSIS, Vagelis (CERN)