The CMS MIP Barrel Timing Detector

drivenira purctum secans Invenire punctum secons

Adi Bornheim

Caltech

On behalf of the CMS MTD Collaboration 12th Workshop on Picosecond Timing Detectors September 9, 2021

Timing Challenges & Opportunities at HL-LHC

CMS Experiment at the LHC, CEFN Data recorded: 2016-0ct-14 06:56:1: 14:052 DMT Run / Event / LS: 280171 / 14:25080 2.29 UD NITION

New physics reach

0 :

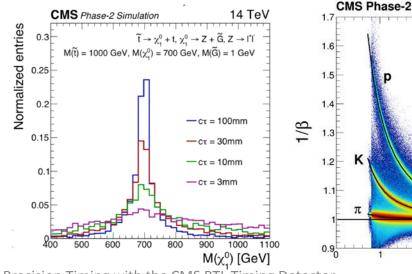
Improved reconstruction

2

p [GeV]

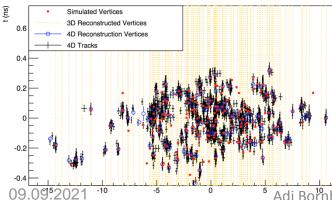
PbPb (5.5 TeV)

Simulation

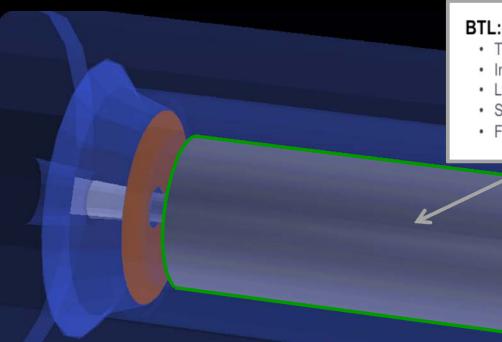

Hydjet

|η| < 1.5

10³

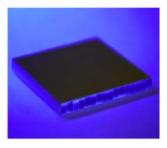

10²

10



Adi Bolhheim - Precision Timing with the CMS BTL Timing Detector

High pile up event: ~100 PU



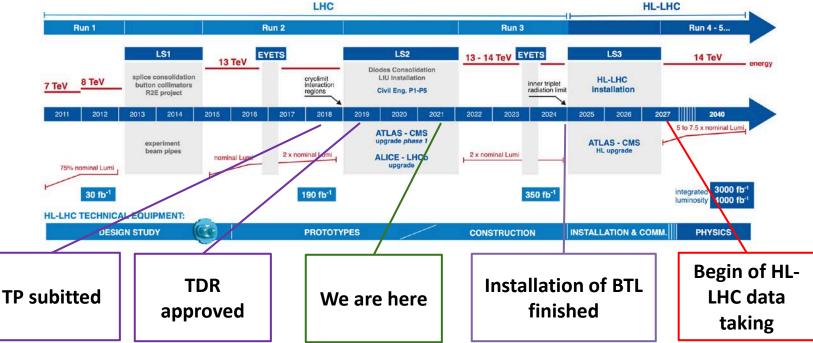
The CMS Barrel Timing Layer

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: |η| < 1.45
- · Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- + Fluence at 4 ab⁻¹: $2x10^{14} n_{eq}/cm^2$

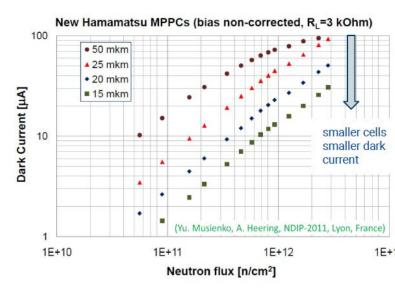
BTL technology choice – SiPM/LYSO :

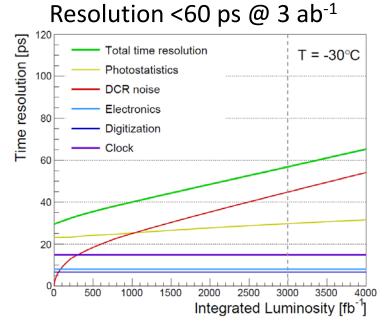
- Timing performance <30 ps with MIPs in LYSO/SiPM demonstrated.</p>
- Radiation hardness established at the required level.
- Extensive experience with SiPM in CMS & LYSO in HEP & PET
- Cost effective mass market components


09.09.2021

Design constraints

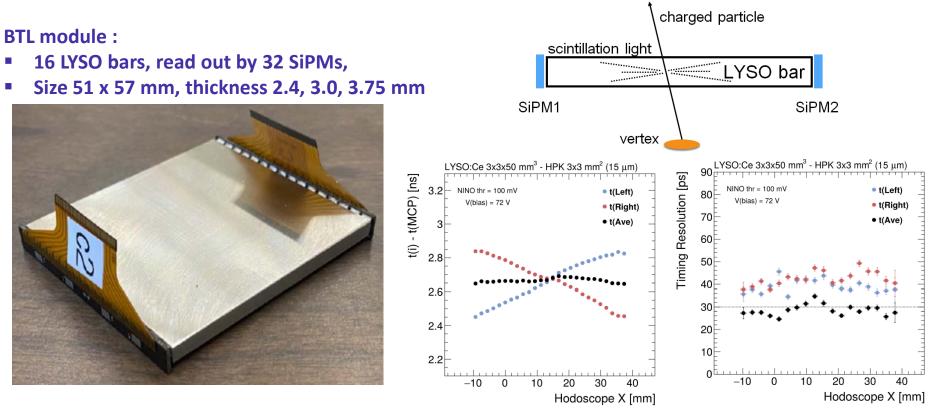
- Time resolution 30-40 ps at the start of HL-LHC, <60 ps up to 3000 fb⁻¹.
 - Requires additional measures to maintain EOL performance.
- Radiation levels for BTL after 3000 fb⁻¹ :
 - Fluence $1.65 1.9 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$, **Dose : 18-32 kGy**
- Maintenance free operation inside the tracker cold volume.
 - Requirement to run SiPMs below -30 C to limit dark count rate (DCR).
- Cover ~38 m² of area at the outer circumference of the CMS tracker.
- Schedule constraints of HL-LHC :





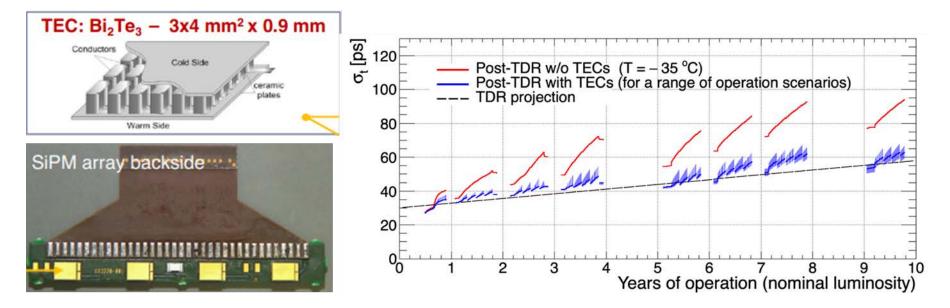
MTD Barrel Sensor

- Maximize raw signal yield and rise time to optimize timing performance.
- LYSO crystals as scintillator
 - Excellent radiation tolerance
 - Bright (40k ph/MeV)
 - Fast rise time O(100ps), decay time ~40 ns
- Silicon Photomultipliers as photo-sensors
 - Compact, insensitive to magnetic fields, fast
 - Optimal SiPM cell size : 15 mµ
 - High dynamic range, rad tolerant
 - Photo Detection efficiency : 20-40%
- High aspect ratio geometry :
 - Enhance light collection efficiency (~5 %)
 - Minimize SiPM area / Crystal area
 - Reduce power consumption
 - Better timing performance


09.09.2021

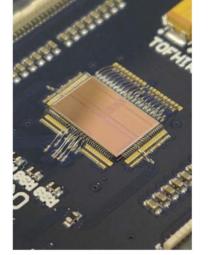
Sensor geometry choice

- Scintillation light measured with a pair of Silicon Photomultipliers (SiPMs), one at each end of the crystal bar
 - Minimize impact point position dependency
 - Minimization of active area and power budget
 - Maximization of resolution ($\sqrt{2}$ improvement)
 - Determination of track position with O(mm) resolution

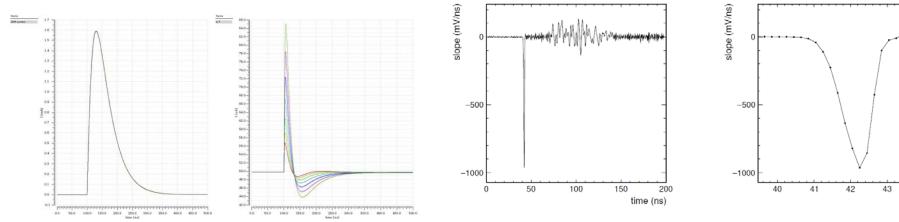


Further Improvement in Design: TEC

- Two handles to mitigate impact of SiPMs dark count rate (DCR) due to large radiation budgets :
 - Reduce temperature
 - Annealing of SIPMs
- Added Thermoelectric Coolers (TEC) coupled to SiPMs :
 - Reduce operational temperature from -35 °C (CO₂) to -45 °C (CO2 + TEC).
 - Allow annealing in situ during detector maintenance at +40 °C



CMS

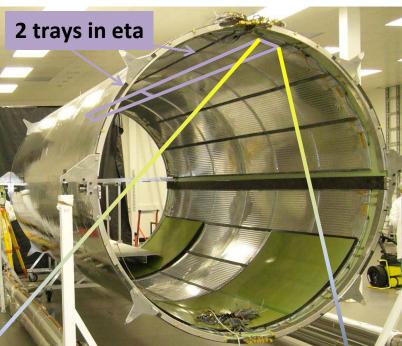

DCR Mitigation with the BTL ASIC

- Dedicated readout ASIC (TOFHIR) is being developed for BTL.
 - Derived from TOFPET ASIC developed for PET applications.
- Key feature is a noise suppression filter :
 - Inverted and delayed pulse subtract from the input pulse
 - Restores baseline at the rising edge of the pulse.
- Improves time resolution by about a factor 2 at EOL.

Simulation of TOFHIR DCR cancelation Left : Input pulse Right : Pulse after subtraction of delayed input pulse Experimental data of DCR cancelation : Left : Sum of input and inverted and delayed input pulse. Right : Zoom on rising edge of same pulse

09.09.2021

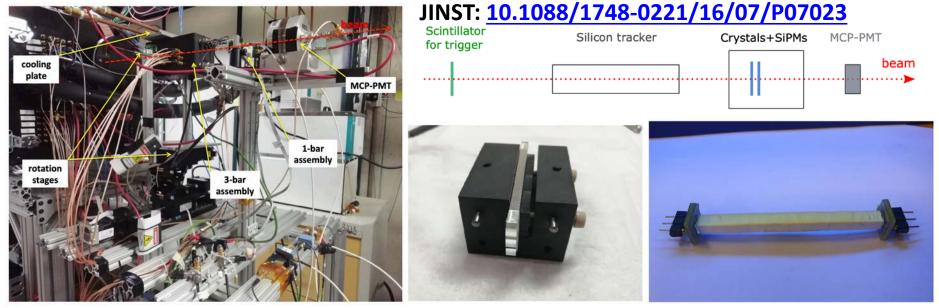
Adi Bornheim - Precision Timing with the CMS BTL Timing Detector


time (ns

BTL Layout & Design

- LINNO LINE ON THE OWNER
- BTL attached to inner wall of Tracker Support Tube Current TST HL-LHC upgrade very similar
- Cold volume shared with Tracker
- BTL Segmentation :
- 72 trays (36 in $\phi \times 2$ in η)
- 331k readout channels, 165k LYSO bars, organized in 10368 modules, 6 Readout Units per tray.
- Tray dimensions : 250 x 18 x 2.5 cm
- Module dimensions : 51x57 mm²

BTL module


BTL tray, transvers (phi) cross section

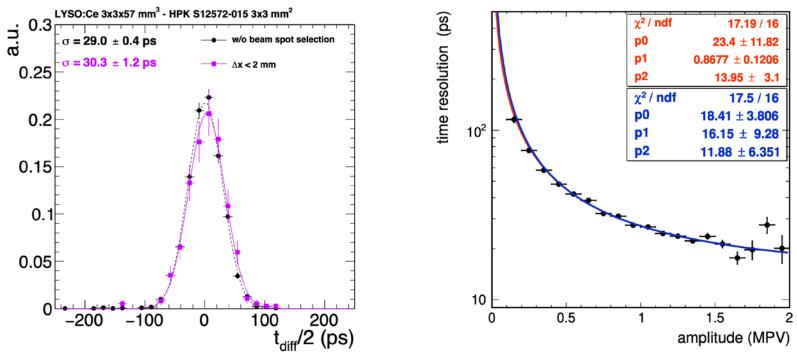
BTL Performance in Test Beam

- Testbeam to test resolution and uniformity of LYSO crystals
- 120 GeV protons beam.
- Silicon tracker telescope to measure proton position and Micro Channel Plate-PMT (MCP-PMT) used as reference time
- Two different SIPMs tested (HBK and FBK). Box at 25°C
- Layout allowing rotation of crystals vs direction of beam
- Recent test beams at PSI and CERN with TOFHIR readout, analysis ongoing.



BTL Timing Measurement

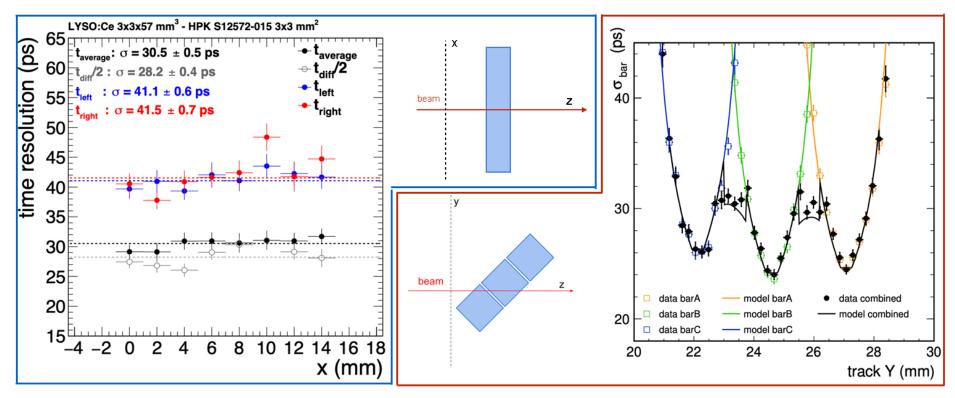
- In FNAL test beam shown , timing extracted from the leading edge of SiPM pulse.
- At low thresholds, timing resolution improves with increasing threshold due to larger S/N.
- At larger thresholds, timing resolution deteriorates as fluctuations on the arrival time of the Nth photon add more jitter.
- In case of BTL, minimum varies as DCR add noise. Optimal threshold in the range of 50 photo electrons.


Time resolution

- Estimated as $\sigma_{t_{average}}$ and $\sigma_{t_{diff}}/2$ where

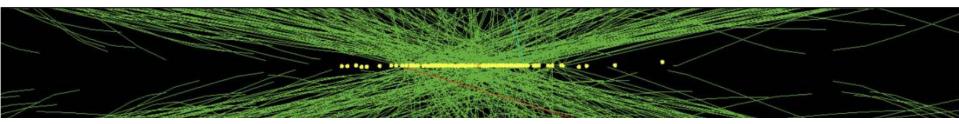
-
$$\Delta t_{bar} = t_{average} - t_{MCP} = (t_{left} + t_{right})/2 - t_{MCP}$$
 and $\sigma_{t_{average}} = \sqrt{\sigma_{\Delta t_{bar}}^2 - \sigma_{t_{MCP}}^2}$

- $t_{diff} = t_{left} t_{right}$
- Resolution for MIP below 30 ps
- Improves with increased light output and, for sufficiently high thresholds, scales with the inverse of the square root of amplitude


Aai Bornneim - Precision Timing with the CMS BTL Timing Detector

Sensor Uniformity

- In the detector, particles will cross LYSO bars at broad range of impact angles depending on their pT.
 - LYSO bar thickness varies along eta in three groups (2.4, 3.0, 3.75 mm) to equalize effective path lenght.
- Uniform response and resolution along the bar :
 - Effect of gaps negligible if < 200 μ m, expect gap ~ 80 μ m for final bar arrays



CMS MTD for HL-LHC

- High impact on the HL-LHC physics program
 - Enable TOF for particle ID
 - Enable 4D reconstruction
 - Enables LLP signatures
 - Enhance statistical significance of Higgs analysis
 - Enhance CMS particle reconstruction by reducing effective pile-up
- CMS MIP Timing Detector well advanced :
 - BTL transitioning from last prototype rounds to pre-series stage.
 - Design choices and concepts confirmed in lab and beam tests.
 - Detector production scheduled to start in 2022.

