

Workshop on Pico-Second Timing Detectors for Physics University of Zurich 9-11 September 2021

Systematic Study of Heavily Irradiated LGAD Stability using the Fermilab Test Beam Facility

V. Sola on behalf of the CMS Collaboration

- ▷ In past beam tests, fatal events have been observed on highly irradiated LGADs
 → No evident correlation between the events, a systematic investigation was necessary
- ▷ Two beam test campaigns at Fermilab dedicated to investigating thin sensor mortality
 - → Extensive collaboration of ATLAS High-Granularity Timing Detector and CMS Endcap Timing Layer crews to plan the activity, select and prepare sensors
 - \rightarrow 30 sensors have been tested in December 2020 and March 2021
 - → precise control over all the involved parameters (e.g., temperature, humidity, bias stability)
- ▷ Main outcomes of the December and March campaigns
 - \rightarrow Improve the understanding of the cause for mortality
 - \rightarrow Collect statistics with a diverse set of sensors
 - \rightarrow Probe a safe region for operation and develop a mitigation strategy

▷ Focus on latest HPK production: HPK2

 \rightarrow 4 gain flavours, from Split 1 to Split 4 (lowest to highest operating voltage)

MPV Collected Charge

Time resolution

- ▷ Focus on latest HPK production: HPK2
 - \rightarrow 4 gain flavours, from Split 1 to Split 4 (lowest to highest operating voltage)
- ▷ Two phases of beam test campaign
 - \rightarrow Sensor death: > 600 V, primarily 1.5E15 n_{eq}/cm²
 - \rightarrow Survival region: 400–600 V, 8E14 1.5E15 n_{eq}/cm²

- ▷ Prerequisite for mortality studies: prove LGAD stability in absence of beam
 - \rightarrow Extensive pre-biasing of every sensor in absence of beam
 - \rightarrow LGADs show a stable behaviour at much higher voltage than reached in beam test

Pico-Second Workshop – 09.09.2021

- ▶ Precise control over all the parameters inside the cold box
 - \rightarrow Cool down only after dry for a very long time
 - \rightarrow Dew point 20–30°C below the board temperature at all times

LGAD cold box at the Fermilab test beam

CMS

V. Sola

Dew point

10

15

20

Temp. [C]

40

20

-20

-40

–60^L

0

Environmental monitoring, post-installation

-16 -17

-18 -19

-14 -15

Board temps (on-board RTD)

35

25 Time [hrs]

▷ 120 GeV protons, arriving in 4 second spill, once per minute

- ▷ Measure proton track using facility telescope
 - \rightarrow 40 μm resolution in this configuration
- ▷ Read LGAD and MCP time reference with a fast, high-resolution oscilloscope
- ▷ Developed high DAQ efficiency ~ 75% (trigger & find track)
 - \rightarrow Contrast with typical LGAD studies: rarely care about trigger efficiency

▷ Measure beam profile with tracker

V. Sola

- ▷ Align each sensor with the beam using a motion stage
 - \rightarrow Occupancy: 3k hits per spill per 2x2 sensor (10k protons total per spill)
- ▷ Slowly increase bias voltage and monitor operation
 - \rightarrow Increase 25V after 100-200k protons on the sensor

Most of the sensors are 2×2 arrays

Only 1 pad is readout The 3 spectator pads are grounded

0.7

0.5

ightarrow Over 21 sensors tested \rightarrow All died

Sensor Type	# of sensors	Fatal Voltage	# of protons at Fatal V	Notes	
HPK2 @ 1.5E15 n _{eq} /cm ²	7	625 – 675 V	10k – 30k	"Standard candle"	
HPK2 @ 2.5E15 n _{eq} /cm ²	4	625 – 675 V	10k – 30k	Role of gain & fluence?	
HPK2 PINs @ 1.5E15 n _{eq} /cm ² or 0.1 MGy	3	625 – 700 V	10k – 30k		
50D and HPK3.1	2	675 – 700 V	10k – 30k	Role of thickness?	
Remove HV capacitance (add 10M HV resistor in 1 case)	3	670 – 700 V	500k – 2M	Treatments to prevent death? (using standard	
Encapsulated sensor	2	625 – 675 V	10k – 30k	$\Pi_{eq}/\Pi_{eq}/\Pi_{eq}$	

Death Event – Example 1

- ▷ HPK2 split 3 sensor, fluence 1.5E15 n_{eq}/cm²
 - \rightarrow Pre-biased in-situ for 6 hours at 700 V
 - \rightarrow Operated in beam for 2 hours at 500-600 V
 - \rightarrow Destroyed after 2 minutes at 625 V

(still alive)

▷ LGAD waveforms in 10k triggers during 4s spill

channel[0]:i_evt {i_evt<=10000}

HPK2 split 3 SE3 IP4, 1.5E15 n_{eq}/cm²

Waveforms in fatal event

HPK2 split 3 SE3 IP4, 1.5E15 n_{eq}/cm²

 \rightarrow Death within 1 ns of proton arrival

(still alive)

Death Event – Example 1

- ▷ Reconstruct proton track in fatal event
- ▷ Matches crater location in post-mortem inspection

HPK2 split 3 SE3 IP4, 1.5E15 n_{eq}/cm²

post-mortem picture

Death Event – Example 1

- ▷ Reconstruct proton track in fatal event
- ▷ Matches crater location in post-mortem inspection

HPK2 split 3 SE3 IP4, 1.5E15 n_{eq}/cm²

▶ PiN at 0.1 MGy, HPK2 W36 (B115)

- ▷ Encapsulated sensors
 - \rightarrow Two sensors completely covered with wire bond encapsulant (Sylgard 186)
 - \rightarrow Crater clearly originates underneath encapsulation
 - \rightarrow No effect on lifetime or other properties

- ▷ Death of sensor with no HV filtering capacitors
 - \rightarrow Remove 10 nF of filter capacitors in parallel with sensor on UCSC board
 - \rightarrow Increase lifetime by ~50x
 - \rightarrow Less dramatic death

HPK2 Split 4 1.5E15 SE3IP4

 \rightarrow Sensor still weak diode after death! (BD @ ~200 V)

- ▷ Rare, large ionization event "Highly Ionising Particle"
 - \rightarrow Excess charge leads to highly localized conductive path
 - \rightarrow Large current flows in a narrow path "Single Event Burnout"
- ▷ Estimate 40-50 MeV deposit needed
 - \rightarrow Rare, but possible in DESY 6 GeV electron beam (has been observed)
 - \rightarrow Common at LHC
- Some ability to model in TCAD, but not really "predictive" so far

- ▷ Rare, large ionization event "Highly Ionising Particle"
 - \rightarrow Excess charge leads to highly localized conductive path
 - \rightarrow Large current flows in a narrow path "Single Event Burnout"
- The energy to melt and vaporise a cylinder of silicon with height of 50 µm and diameter of 10 µm is about 150 µJ
 - ightarrow The energy stored in the HV filtering capacitance of the read-out board used in the testing is ~ 2 mJ
 - \rightarrow The energy stored in a 2×2 sensor array with pad area 1.3×1.3 mm² is ~ 3 μJ
 - \rightarrow The energy stored in a 16×16 sensor array with pad area 1.3×1.3 mm^2 is ~ 200 μJ

 $[U = 1/2CV^2$, with V = 600 V]

- ▷ PiNs, and 2.5E15 n_{eq}/cm² LGADs die at similar conditions as 1.5E15 n_{eq}/cm² LGADs
 - \rightarrow Gain is not necessary for the death mechanism
 - \rightarrow Mortality is a function of sensor thickness and voltage only (to first order)
 - \rightarrow \geq 600 V for 50 μm thick sensors
- ▷ Proton track in a fatal event always points to crater
 - \rightarrow Death is caused by localized single proton interaction
- ightarrow HV capacitance accelerates death and increases the severity of death events ightarrow But, not possible to escape capacitance in a full-sized array (~1 nF)
- ▷ Crater location: no major preference
 - \rightarrow 1/3 at pad edge, 1/3 near bonding sites, 1/3 generic location
 - \rightarrow No preference for readout / non-readout pad

Istituto Nazionale di Fisica Nucleare

- The second phase: demonstrate survival of sensors at a reasonable operating voltage with as many hits as possible
- ▷ Use maximum intensity: 1M protons per spill (~120k per sensor per minute)
 - \rightarrow Beam slightly defocused to illuminate 10 sensors simultaneously
- ▶ Proton fluences achieved (per sensor):
 - \rightarrow 150M at a conservative voltage
 - \rightarrow 350M at target operating voltage
 - \rightarrow 100M at aggressive voltage beyond the optimal operating point
- ▷ Periodic monitoring of sensor occupancy to verify flux estimate

Survival Batch Results

Sensor Type	# of sensors	Tested Voltage	Notes
HPK2 split 4 @ 8E14 n _{eq} /cm ²	4	500 – 575 V	No deaths
HPK2 @ 1.5E15 n _{eq} /cm ²	2	500 – 575 V	No deaths
FBK UFSD3.2 @ 8E14 n _{eq} /cm ² (W7 & W13)	2	400 V	No deaths
FBK UFSD3.2 @ 1.5E15 n _{eq} /cm² (W7 & W13)	2	500 – 600 V	No death until operating voltage exceeded safety

- ▷ Bottom line: No death observed in 50 µm sensors with bias < 575 V
 - \rightarrow Probed with ~500M protons (50,000x more than needed for death at 625 V)
- ▷ FBK: hint that thinner sensors die at a lower voltage
 - \rightarrow W13 45 μ m: died at 550 V
 - \rightarrow W7 55 $\mu m:$ survived 100M at 600 V (still alive)

- ▷ 50 µm LGADs should remain at a voltage \leq 550-575 V in CMS/ATLAS
- ► HPK sensors at 8E14 n_{eq}/cm²: happily operate within this regime
 - \rightarrow This represents majority of sensors for ETL
- ▷ HPK sensors at 1–1.5E15 n_{eq}/cm²: reduced performance, but not catastrophic → HPK2 split 1 & 2 achieve 40-50 ps at 550V
- ▷ Most of the FBK wafers deliver required performances at all ETL fluences

▷ 50 µm LGADs should remain at a voltage \leq 550-575 V in CMS/ATLAS

- ► HPK sensors at 8E14 n_{eq}/cm²: happily operate within this regime
 - \rightarrow This represents majority of sensors for ETL
- ▷ HPK sensors at 1–1.5E15 n_{eq}/cm²: reduced performance, but not catastrophic → HPK2 split 1 & 2 achieve 40-50 ps at 550V
- ▷ Most of the FBK wafers deliver required performances at all ETL fluences

Only HPK sensors at innermost radii require reduced voltage Few percent of ETL area

- \sim Sensors die when the electric field is \sim 12 V/µm
- \rightarrow What is the safe margin for operation?
- \rightarrow Is the sensor mortality a threshold effect?
- ▶ For the same electric field value, thicker sensors provide a higher collected charge

- ▷ Extensive study of LGAD mortality carried out at the Fermilab Test Beam Facility
- Understanding of death mechanism significantly improved
 - \rightarrow Caused by single HIP interaction
 - \rightarrow Unrelated to gain or sensor fluence only the bias
 - \Rightarrow It may be a critical field of ~12 V/µm, but need to better probe other thicknesses
 - \rightarrow Simulation in GEANT and TCAD ongoing
- ▷ The first indication of safe operating voltage has been established
 - \rightarrow HPK sensors < 1E15 n_{eq}/cm² require no mitigation
 - \rightarrow HPK sensors > 1E15 n_{eq}/cm² will be slightly under biased in final years
 - \rightarrow FBK sensors can reach the operating point at all fluences
- ▷ Follow-up with an extreme rate stress test in 2021/2022 at FNAL High-Rate Facility (~ 10⁸ – 10⁹ protons per spill on each sensor)