NLO EW corrections to same-sign WW scattering in POWHEG

Mauro Chiesa

LAPTh
VBScan meeting, December 2, 2019
based on arXiv:1906.01863
in collaboration with Ansgar Denner, Jean-Nicolas Lang and Mathieu Pellen

■ New Monte Carlo event generator for $p p \rightarrow l \nu l^{\prime} \nu^{\prime} j j$ at NLO EW accuracy matched to QED PS and supplemented with QCD PS

■ The generator relies on the POWHEG-BOX-RES framework

■ Code, documentation, and examples are available in the POWHEG-BOX svn repository:

vbs-ssww-nloew

Vector boson scattering at LHC (1)

$\mathcal{M} \simeq$
$\mathcal{O}\left(\alpha^{3}\right)$
$\mathcal{O}\left(\alpha^{3}\right)$
$\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{2}\right)$
LO
$\mathcal{O}\left(\alpha^{6}\right)$
$\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{5}\right)$
$\mathcal{O}\left(\alpha_{\mathrm{s}}^{2} \alpha^{4}\right)$

VBS at NLO: technical aspects

(2)

NLO corrections to VBS

POWHEG ${ }^{1}$

algorithm for the matching of NLO QCD corrections to QCD PS

- implemented in the POWHEG-BOX-V2 framework
S. Frixione et al. arXiv:0709.2092, S. Alioli arXiv:1002.2581
generalized to NLO EW corrections+QED PS (with limitations)
L. Barze et al. arXiv:1302.4606,1202.0465, C. Carloni et al. arXiv: 1612.02841
resonance-aware POWHEG algorithm implemented in POWHEG-BOX-RES
T. Ježo and P. Nason, arXiv:1509.09071
${ }^{1}$ P. Nason hep-ph/0409146

NLO EW+QED PS in POWHEG: current limitations

The implementation of NLO EW corrections in POWHEG-BOX-V2/RES is not general:

- it only works if a process can be identified using particle flavours (NOT the case of $p p \rightarrow W W j j$ with LO contribs $\mathcal{O}\left(\alpha^{6}\right), \mathcal{O}\left(\alpha^{4} \alpha_{\mathrm{S}}^{2}\right)$, $\left.\mathcal{O}\left(\alpha^{5} \alpha_{\mathrm{S}}\right)\right)$
- the subtraction for mixed interferences is missing

cannot be used to compute the full NLO corrections to VBS!

Approximations

Limitations of NLO-EW corrections in POWHEG

Strategy:

■ consider only LO $\mathcal{O}\left(\alpha^{6}\right)$

- consider only corrections $\mathcal{O}\left(\alpha^{7}\right)$
- $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ in PS approximation or via combination with NLO-QCD+QCD PS results

Approximations: important remark

- the exact matrix elements at $\mathcal{O}\left(\alpha^{6}\right)$ and $\mathcal{O}\left(\alpha^{7}\right)$ are used
- NO on-shell approximation for the W bosons
- the approximation consists in neglecting all contributions but the $\mathcal{O}\left(\alpha^{6}\right)$ one at LO (and $\mathcal{O}\left(\alpha^{7}\right)$ at NLO)

Even if POWHEG generates events in the full phase-space, the code MUST be used ONLY for VBS-like event selections. Otherwise the selected contributions might not be the dominant ones.

Tools

■ Recola: ME provider (full matrix elements $\mathcal{O}\left(\alpha^{6}\right)$ and $\mathcal{O}\left(\alpha^{7}\right)$)
s. Actis et al. arXiv:1211.6316, arXiv:1605.01090

- Collier: library for the calculation of one-loop tensor and scalar integrals
A. Denner and S. Dittmaier arXiv:1604.06792

■ POWHEG-BOX-RES: phase-space generation, integration, event generation
T. Ježo and P. Nason, arXiv:1509.09071

- PYTHIA8.2: QED and QCD PS, hadronization
T. Sjöstrand et al. hep-ph/0603175, arXiv:1410.3012

Resonance histories (1)

partonic channel	interferences at $\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{5}\right)$	kinematic channels
uu $\quad \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{dd}$	yes	t, u
$\mathrm{uc} / \mathrm{cu} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{ds}$	no	t
$\mathrm{cc} \quad \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{SS}$	yes	t, u
$\mathrm{u} \overline{\mathrm{d}} / \overline{\mathrm{d}} \mathrm{u} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{d} \overline{\mathrm{u}}$	yes	t, s
$\mathrm{u} \overline{\mathrm{d}} / \overline{\mathrm{d}} \mathrm{u} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{s} \overline{\mathrm{c}}$	no	s
$\mathrm{u} \overline{\mathrm{s}} / \overline{\mathrm{s}} \mathrm{u} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{d} \overline{\mathrm{c}}$	no	t
$\mathrm{c} \overline{\mathrm{d}} / \overline{\mathrm{d}} \mathrm{c} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{s} \overline{\mathrm{u}}$	no	t
$\mathrm{c} \overline{\mathrm{s}} / \overline{\mathrm{s}} \mathrm{c} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{d} \overline{\mathrm{u}}$	no	s
$\mathrm{c} \overline{\mathrm{S}} / \overline{\mathrm{s}} \mathrm{C} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \mathrm{S} \overline{\mathrm{c}}$	yes	t, s
$\overline{\mathrm{d}} \overline{\mathrm{d}} \quad \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \overline{\mathrm{u}} \overline{\mathrm{u}}$	yes	t, u
$\overline{\mathrm{d}} \overline{\mathrm{s}} / \overline{\mathrm{s}} \overline{\mathrm{d}} \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \overline{\mathrm{u}} \overline{\mathrm{c}}$	no	t
$\overline{\mathrm{S}} \overline{\mathrm{s}} \quad \rightarrow \mu^{+} \nu_{\mu} \mathrm{e}^{+} \nu_{\mathrm{e}} \overline{\mathrm{c}} \overline{\mathrm{c}}$	yes	t, u

Resonance histories (2)

Richest s-channel history: the others can be obtained by removing internal propagators

- in principle, all possible histories should be declared
- each history is integrated as an independent process: too many histories slow down the calculation considerably
- the history will be written in the LHE event:
simplified histories could lead to (small) recoil mismodeling in the PS

Validation: LHE level

MoCaNLO is the fixed-order integrator used in B. Biedermann et al. arXiv:1611.02951,

Validation: LHE

$$
\begin{aligned}
& d \sigma=\sum_{f_{b}} \bar{B}^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right) d \boldsymbol{\Phi}_{n}\left\{\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{T}^{\text {min }}\right)\right. \\
&\left.+\sum_{\alpha_{r} \in\left\{\alpha_{r} \mid f_{b}\right\}} \frac{\left[d \Phi_{r a d} \theta\left(k_{T}-p_{T}^{\text {min }}\right) \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{T}\right) R\left(\boldsymbol{\Phi}_{n+1}\right)\right]_{\alpha_{r}}^{\boldsymbol{\Phi}_{n}^{\alpha_{r}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
\end{aligned}
$$

In principle, LHE events and fixed-order NLO results are NOT comparable :

- contribution from Sudakov form factor at the LHE

■ additional radiative kinematics (RES radiations)

POWHEG and MoCaNLO agree very well because the NLO EW corrections are dominated by virtual corrections

Approximated $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ corrections: 1st strategy (1)

- $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ corrections <0.25 $\mathcal{O}\left(\alpha^{7}\right)$ ones
- We can approximate $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ corrections running a QCD PS

Starting scale for the QCD-PS: scalup=LO_scale $=$ pt_rad_powheg

Approximated $\mathcal{O}\left(\alpha_{S} \alpha^{6}\right)$ corrections: 1st strategy (2)

scalup=LO_scalefpt_rad_powheg

- we don't have ME for real QCD radiation: POWHEG Sudakov only tries to generate γ radiation

■ setting scalup to pt_rad_powheg for the QCD-PS will unphysically suppress the QCD radiation

LO_scale

It is set to $\sqrt{p_{\mathrm{Tj}_{1}} p_{\mathrm{Tj} 2}}($ NOT $\sqrt{s})$, as the relevant invariants for the QCD corrections are t / u (NOT s)

Approximated $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ corrections: 1st strategy (3)

Approximated $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ corrections: 2nd strategy

Combination with the results at NLO QCD+QCD-PS accuracy

$$
\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}}\right]_{\mathrm{EW} \& \mathrm{QCD}}=\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}}\right]_{\mathrm{EW}+\mathrm{PS}}+\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}}\right]_{\mathrm{QCD}+\mathrm{QCDPS}}-\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}}\right]_{\mathrm{LO}+\mathrm{QCDPS}}
$$

$\left[\frac{\mathrm{d} \sigma}{\mathrm{dO}}\right]_{\text {QCD }+ \text { QCDPS }}$ can be computed with other tools (e.g. POWHEG-BOX-V2/vbf_wp_wp/)

The LO contribution is subtracted to avoid the double counting of the QCD PS in $\left[\frac{\mathrm{d} \sigma}{\mathrm{dO}}\right]_{\mathrm{EW}+\mathrm{PS}}$

Non-factorizable QCD corrections are NOT included

Conclusions and perspectives

■ We developed a MC event generator for $p p \rightarrow l \nu l^{\prime} \nu^{\prime} j j$ at NLO EW accuracy matched to QED PS in the POWHEG-BOX-RES framework

■ only $\mathcal{O}\left(\alpha^{7}\right)$ corrections to the LO $\mathcal{O}\left(\alpha^{6}\right)$ are included

- $\mathcal{O}\left(\alpha_{\mathrm{S}} \alpha^{6}\right)$ can be included in a approximated way (PS or combination with factorizable NLO QCD corrections+PS)
- our approximated treatment can be easily applied to the other VBS processes at the LHC

■ in order to implement the full NLO corrections to VBS at the LHC, the general structure of POWHEG-BOX has to be generalized and the subtraction formulas for the mixed interferences should be derived

Backup Slides

Approximated $\mathcal{O}\left(\alpha_{\mathbf{S}} \alpha^{6}\right)$ corrections: 1st strategy (4)

Dijet invariant mass (LO +PS)

Rapidity difference of the two leading jets (LO +PS)

Resonance histories

To implement a process in POWHEG-BOX-V2, the user should provide

■ B, V, R matrix elements

- phase-space
- list of Born and real processes (flavour lists)

In POWHEG-BOX-RES the user should also provide the resonance histories for each process

all regions:	7	11												
S~ c ==>		$\begin{gathered} \mathrm{W}+ \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 3 \end{gathered}$	$\begin{gathered} \text { W+ } \\ 5 \end{gathered}$	$\begin{gathered} \text { W- } \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{e}+ \\ & 4 \end{aligned}$	$\begin{aligned} & \text { ve } \\ & 4 \end{aligned}$	$\begin{gathered} \text { MU } \\ 6 \end{gathered}$	$\begin{aligned} & \text { vmu } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { C~ } \\ & 7 \end{aligned}$	5	$\underset{4}{\text { gam }}$	I	ptr= 13
all regions:	8	14												
S~	$\begin{gathered} \text { W+ } \\ 0 \end{gathered}$	$\begin{gathered} \text { W+ } \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { W+ } \\ 5 \end{gathered}$	$\begin{aligned} & \text { W- } \\ & 5 \end{aligned}$	e+	ve 4	$\begin{gathered} \text { mut } \\ 6 \end{gathered}$	$\begin{aligned} & \text { vmu } \\ & 6 \end{aligned}$	C~	$\begin{aligned} & s \\ & 7 \end{aligned}$	${ }_{6}^{\text {gam }}$	I	tr= 14

NLO PS matching

- NLO QCD corrections: $d \sigma=d \sigma_{0}\left[1+\delta_{\alpha_{S}}\right]$
- QCD-PS: all order parton radiation in leading log approx.

$$
d \sigma=d \sigma_{0}\left[1+\sum_{n=1}^{\infty} \delta_{\alpha_{S}^{n}}^{\prime}\right]
$$

■ NLO QCD+QCD-PS: $d \sigma=d \sigma_{0}\left[1+\delta_{\alpha_{S}}+\sum_{n=2}^{\infty} \delta_{\alpha_{S}^{n}}^{\prime}\right]$ matching replaces first PS radiation with NLO real radiation
many matching strategies are available in the literature: we used the POWHEG ${ }^{2}$ method
${ }^{2}$ P. Nason hep-ph/0409146, S. Frixione et al. arXiv:0709.2092, S. Alioli arXiv:1002.2581

NLO PS matching (2)

POWHEG matching:

■ the PS must be p_{T} ordered:

$$
p_{\mathrm{T}, 1}^{\mathrm{PS}}>p_{\mathrm{T}, 2}^{\mathrm{PS}}>p_{\mathrm{T}, 3}^{\mathrm{PS}}>p_{\mathrm{T}, 4}^{\mathrm{PS}}>\cdots
$$

■ POWHEG generates one parton radiation at NLO accuracy

- the scale of the POWHEG radiation $\left(p_{\mathrm{T}}^{\mathrm{PWG}}\right)$ is set as starting scale for the PS

$$
p_{\mathrm{T}}^{\mathrm{PWG}}>p_{\mathrm{T}, 1}^{\mathrm{PS}}>\cdots
$$

POWHEG (1)

$$
R=\sum_{\alpha_{\mathrm{r}}} R^{\alpha_{\mathrm{r}}}
$$

- $R^{\alpha_{r}}=\mathcal{S}^{\alpha_{r}} R$
- $\mathcal{S}^{\alpha_{r}}=1$ in α_{r}
- $\mathcal{S}^{\alpha_{r}} \simeq 0$ outside α_{r}

$$
\begin{aligned}
& \bar{B}^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)=\left[B\left(\boldsymbol{\Phi}_{n}\right)+V\left(\boldsymbol{\Phi}_{n}\right)\right]_{f_{b}} \\
& +\sum_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \int\left[d \Phi_{\mathrm{rad}}\left\{R\left(\boldsymbol{\Phi}_{n+1}\right)-C\left(\boldsymbol{\Phi}_{n+1}\right)\right\}\right]_{\alpha_{\mathrm{r}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{r}}}=\boldsymbol{\Phi}_{n}} \\
& +\sum_{\alpha_{\oplus} \in\left\{\alpha_{\oplus} \mid f_{b}\right\}} \int \frac{d z}{z} G_{\oplus}^{\alpha}\left(\boldsymbol{\Phi}_{n, \oplus}\right)+\sum_{\alpha_{\ominus} \in\left\{\alpha_{\ominus} \mid f_{b}\right\}} \int \frac{d z}{z} G_{\ominus}^{\alpha \ominus}\left(\boldsymbol{\Phi}_{n, \ominus}\right)
\end{aligned}
$$

POWHEG (2)

$$
\begin{aligned}
& d \sigma=\sum_{f_{b}} \bar{B}^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right) d \boldsymbol{\Phi}_{n}\left\{\Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{T}^{\text {min }}\right)\right. \\
&\left.+\sum_{\alpha_{r} \in\left\{\alpha_{r} \mid f_{b}\right\}} \frac{\left[d \Phi_{r a d} \theta\left(k_{T}-p_{T}^{m i n}\right) \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, k_{T}\right) R\left(\boldsymbol{\Phi}_{n+1}\right)\right]_{\alpha_{r}}^{\bar{\Phi}_{n}^{\alpha_{r}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\mathbf{\Phi}_{n}\right)}\right\} \\
& \Delta^{f_{b}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)= \prod_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \Delta^{\alpha_{\mathrm{r}}}\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)= \\
& \prod_{\alpha_{\mathrm{r}} \in\left\{\alpha_{\mathrm{r}} \mid f_{b}\right\}} \exp \left\{-\int \frac{\left[d \Phi_{\mathrm{rad}} R\left(\boldsymbol{\Phi}_{n+1}\right) \theta\left(k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)-p_{\mathrm{T}}\right)\right]_{\alpha_{\mathrm{r}}}^{\overline{\boldsymbol{\Phi}}_{n}^{\alpha_{\mathrm{r}}}=\boldsymbol{\Phi}_{n}}}{B^{f_{b}}\left(\boldsymbol{\Phi}_{n}\right)}\right\}
\end{aligned}
$$

POWHEG (3)

POWHEG-BOX-V2

- try to generate one radiation from each $\alpha_{\mathrm{r}}\left(p_{\mathrm{T}}^{\alpha_{\mathrm{r}}}\right)$
- find the hardest radiation $\left(p_{\mathrm{T}}^{\max }\right)$
- $p_{\mathrm{T}}^{\text {max }}$ is the starting scale of the PS

POWHEG-BOX-RES ${ }^{(*)}$

- try to generate one radiation from each $\alpha_{\mathrm{r}}\left(p_{\mathrm{T}}^{\alpha_{\mathrm{r}}}\right)$
- for each resonance r, find the hardest radiation emitted by the resonance $\left(p_{\mathrm{T}, r}^{\max }\right)$
- $p_{\mathrm{T}, r}^{\max }$ is the starting scale of the PS radiation from r
(*) T. Ježo and P. Nason, arXiv:1509.09071

