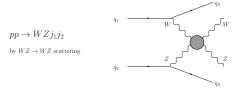
Unitarization effects in the EChL predictions of *WZ* scattering at the LHC

Roberto A. Morales (work with C. García-García, M.J. Herrero)

WG1 periodic meeting Based on Phys. Rev. **D100** (2019) 096003 [1907.06668]



- Introduction: linear vs. non-linear EFT's
- The Electroweak Chiral Lagrangian (EChL)
- Aspects on unitarity violation
- Restoring unitarity in $W\!Z$ scattering at the LHC
- Parameter determination uncertainties
- Conclusions

The (EW) Chiral symmetry in the SM and BSM

The Spontaneously Breaking Sector of the SM can be written as

$$\mathcal{L}_{SBS} = \frac{1}{4} \langle \partial_{\mu} M^{\dagger} \partial^{\mu} M \rangle - \frac{\lambda}{4} \left(\frac{1}{2} \langle M^{\dagger} M \rangle + \frac{\mu^{2}}{\lambda} \right)^{2}$$

where $M = \sqrt{2} \begin{pmatrix} \phi_{0}^{*} & \phi^{+} \\ -\phi^{-} & \phi_{0} \end{pmatrix}$ and the Φ doublet is $\begin{pmatrix} \phi^{+} \\ \phi_{0} \end{pmatrix}$.

 \Rightarrow the $\mathcal{L}_{\textit{SBS}}$ is manifestly invariant under the global transformation:

$$M o M' = g_L M g_R^{\dagger}$$
 with $g_L \subset SU(2)_L$ and $g_R \subset SU(2)_R$

This global $SU(2)_L \times SU(2)_R$ is called the Chiral symmetry and it is spontaneously broken down to the diagonal subgroup

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R} \equiv SU(2)_{Custodial}$$

Gauge interactions $(g' \neq 0)$ and different fermion masses (in the same doublet) explicitly break the Chiral and Custodial symmetries.

Main implication: the ρ parameter value is close to 1!

- The Higgs and the Goldstone bosons (GB) form a left SU(2) doublet. In particular, the Higgs always appears in the combination H + v.
- The GB transform linearly under the Chiral symmetry.
- Typical situation when H is a fundamental field.
- Based on a **cutoff** Λ expansion (canonical dimension):

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} \hat{\mathcal{O}}_i^{d=6} + \sum_{i} \frac{f_i^{(8)}}{\Lambda^4} \hat{\mathcal{O}}_i^{d=8} + \dots$$

SMEFT typically emerging from weakly interacting UV theory.

Our approach to BSM: the non-linear EChL or HEFT

- The Goldstone bosons π^a are independent from the Higgs boson. In particular, the Higgs is a SU(2) singlet.
- The π^a transform non-linearly under the Chiral symmetry.
- Appropriate for composite models of the EWSB (*H* as a GB).
- Based on a derivative expansion ↔ Chiral expansion (powers of p). Derivates and masses are soft scales of the EFT with power counting O(p) ⇒ the L is organized in terms of operators O(p²), O(p⁴), ...
- Associated to strongly interacting UV theory. Natural scenario to generate dynamically resonances.
- Non-trivial relation between linear and non-linear representations! Some higher order operators, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion).

The Electroweak Chiral Lagrangian (EChL)

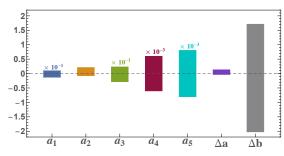
- Symmetries are Lorentz, CP, EW gauge SU(2)_L × U(1)_Y and Chiral SU(2)_L × SU(2)_R → SU(2)_{L+R}. Based on ChPT of QCD.
- Light degrees of freedom and building blocks are: Higgs boson as a singlet $\Rightarrow \mathcal{F}(H) = 1 + 2a\frac{H}{v} + b\left(\frac{H}{v}\right)^2 + ...$ EW gauge bosons $\Rightarrow \hat{W}_{\mu} = gW_{\mu}^a \tau^a/2$, $\hat{B}_{\mu} = g' B_{\mu} \tau^3/2$, $\hat{W}_{\mu\nu}$, $\hat{B}_{\mu\nu}$. EW GB in $U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$ that transforms linearly $U \rightarrow g_L Ug_R^{\dagger}$ $\Rightarrow D_{\mu}U = \partial_{\mu}U + i\hat{W}_{\mu}U - iU\hat{B}_{\mu}$ and $\mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$.

Our assumptions: fermion ints as in SM. Custodial sym preserved.

$$\begin{split} \mathcal{L}_{EChL} &= \mathcal{L}_{2} + \mathcal{L}_{4} \text{ (relevant for VBS)} \\ \mathcal{L}_{2} &= -\frac{1}{2g'} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle - \frac{1}{2g} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle + \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H) \\ &+ \frac{v^{2}}{4} \mathcal{F}(H) \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \\ \mathcal{L}_{4} &= a_{1} \langle U \hat{B}_{\mu\nu} U^{\dagger} \hat{W}^{\mu\nu} \rangle + i a_{2} \langle U \hat{B}_{\mu\nu} U^{\dagger} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \rangle - i a_{3} \langle \hat{W}_{\mu\nu} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \rangle \\ &+ a_{4} \langle \mathcal{V}_{\mu} \mathcal{V}_{\nu} \rangle \langle \mathcal{V}^{\mu} \mathcal{V}^{\nu} \rangle + a_{5} \langle \mathcal{V}_{\mu} \mathcal{V}^{\mu} \rangle \langle \mathcal{V}_{\nu} \mathcal{V}^{\nu} \rangle \end{split}$$

EChL parameters and interactions

- SM predictions recovered for $\Delta a = a - 1 = 0$, $\Delta b = b - 1 = 0$ and $a_i = 0$.
- Only *a*, *b*, *a*₄ and *a*₅ survive *switching off* gauge interactions (limit $g, g' \rightarrow 0$). Relevant parameters applying Equivalence Theorem (ET): $A(V_L V_L \rightarrow V_L V_L) \simeq A(\pi\pi \rightarrow \pi\pi)$
- Exp. bounds derived from [Pyhs. Rev. D98 (2018) 030001 (PDG) Pyhs. Rev. D99 (2019) 033001 (ATLAS) Phys. Lett. B 798 (2019)134985 (CMS) ATLAS-CONF-2019-005 (1909.02845) ATLAS-CONF-2019-030]



Unitarity violation in VBS

- VBS is a powerful observable to look for New Physics: extremely sensitive to SM deviations introduced by EChL operators. Quasi-direct access to Goldstone dynamics through the longitudinal components (Equivalence Theorem).
- In the EChL context, interactions among gauge bosons scale with the external momenta ⇒ pathological predictions when energy increases ⇒ violation of unitarity of the S matrix!
- Unitarity requires on each J^{th} partial wave of $A(V_{\lambda_1}V_{\lambda_2} o V_{\lambda_3}V_{\lambda_4})$

$$\mathrm{Im}[a^{J}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s)] = \sum_{\lambda_{a},\lambda_{b}} [a^{J}_{\lambda_{1}\lambda_{2}\lambda_{a}\lambda_{b}}(s)][a^{J}_{\lambda_{a}\lambda_{b}\lambda_{3}\lambda_{4}}(s)]^{*}$$

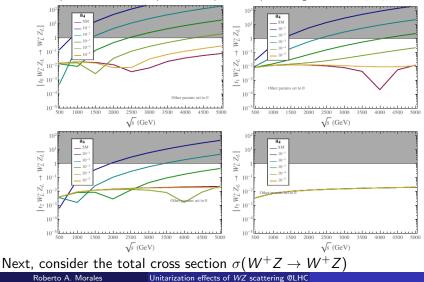
It is a coupled system among all helicity states!

- Unitarity condition can be rewritten as |a^J(s)| ≤ 1 and defines the unitary violation energy scale. This scale depends on EChL parameters.
- As in the ChPT, unitarity condition is fulfilled perturbatively

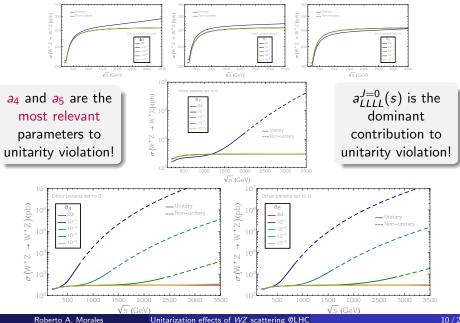
$$\operatorname{Im}[a^J_{\mathcal{O}(p^4)}(s)] = |a^J_{\mathcal{O}(p^2)}(s)|^2$$

Unitarity violation in WZ scattering at partial wave level

As an example, consider the helicity state $LL \rightarrow LL$ and study the effect of a_4 in the partial wave amplitudes t_J corresponding to J = 0, 1, 2, 3.

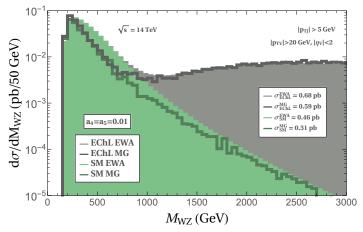


Unitarity violation in WZ scattering at subprocess level



Unitarity violation in WZ scattering at the LHC

The pathological behaviour at subprocess level translates in the prediction at the LHC process $pp \rightarrow WZ + jj$. For example in the differential cross section:



\Rightarrow unitarization for realistic predictions is mandatory!

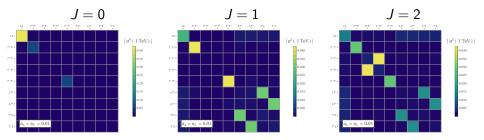
Roberto A. Morales

Unitarization effects of WZ scattering @LHC

Coupled helicities system

Looking at the partial wave amplitudes:

• All the helicities channels $(9 \times 9 = 81)$ have to be considered consistently:



- The *ith* helicity amplitude grows with the CM energy like A_i ~ s^{ξ_i} ⇒ eventually reach the unitarity limit |a_i^J| = 1 at some scale s = Λ_i.
- Longitudinal modes only dominant for some J's or (a_4, a_5) values. In particular, $\xi_{LLLL} = 2$ can be understood through the ET.

Unitarization methods applied to the total amplitude

In order to provide unitary amplitude \hat{A} , several methods are implemented:

• **Cut-Off**: limit the validity range of the EFT up to the minimal unitarity violation scale Λ

$$\hat{A}(WZ
ightarrow WZ) = A(WZ
ightarrow WZ) \quad ext{for } s \leq \Lambda^2$$

• Form Factor (FF): suppress the pathological behaviour via multiplying the amplitude by a smooth, continuous function

$$\hat{A}(WZ o WZ) = A(WZ o WZ) f^{
m FF}$$
 with $f^{
m FF} = (1+s/\Lambda^2)^{-\xi}$

• Kink: now the suppression is not smooth, but through a step function

$$f^{\mathrm{Kink}} = egin{cases} 1 & ext{if } s \leq \Lambda^2 \ (s/\Lambda^2)^{-\xi} & ext{if } s > \Lambda^2 \end{cases}$$

Unitarization methods applied to the partial waves

In the other two methods, unitarity is recovered from partial waves directly. Our proposal:

$$\hat{A}_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) = A_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) + 16\pi \sum_{J=0}^2 (2J+1) \, d^J_{\lambda,\lambda'}(\cos\theta) \left(\hat{\mathbf{a}}^J_{[\lambda_1\lambda_2\lambda_3\lambda_4]}(s) - \mathbf{a}^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s) \right)$$

• K-matrix: an imaginary part is added such that the unitarity limit is saturated. The 9 × 9 matrix **a** containing the whole helicity system is reconstructed as

$$\hat{\mathbf{a}}^J = \mathbf{a}^J \cdot [\mathbf{1} - i \, \mathbf{a}^J]^{-1}$$

• Inverse Amplitude Method (IAM): from the contributions of $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ in the chiral expansion, the partial wave matrix amplitude is reconstructed as

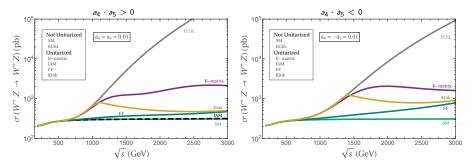
$$\hat{\mathbf{a}}^{J} = \mathbf{a}^{(2) J} \cdot [\mathbf{a}^{(2) J} - \mathbf{a}^{(4) J}]^{-1} \cdot \mathbf{a}^{(2) J}$$

Not only unitary predictions arise, but also the appropriate analytical structure \Rightarrow dynamically generated resonances can be accommodated with this procedure (as in ChPT for pion-pion scattering).

We work here with non-resonant scenarios below $4\pi v \sim 3$ TeV. Roberto A. Morales Unitarization effects of *WZ* scattering @LHC

Implications of unitarity at subprocess level

Very different predictions for the $WZ \rightarrow WZ$ total cross section using different methods! \Rightarrow the experimental constraints interpreted using one method or another will be different.



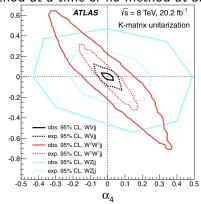
Then our aim is to give an estimate of the theoretical uncertainty in the experimental determination of a_4 and a_5 due to the unitarization scheme choice.

Present experimental constraints: no consensus yet

Current bounds are given using one method at a time or no method at all.

- Some ATLAS analyses: [Phys. Rev. D95 (2017) 032001] use K-matrix for $a_{4(5)} = \alpha_{4(5)}$ contours at 95% C.L. Our work focused in this Run 1
 - Other ATLAS and CMS analyses: no unitarization method applied $a_{4(5)} = \frac{v^4}{16} \frac{f_{50(51)}}{\Lambda^4}$

• Other searches: Cut-Off used.



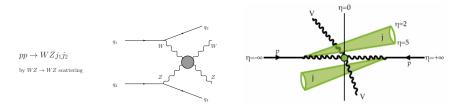
	Expected (WV) (TeV ⁻⁴)	Observed (ZV) (TeV ⁻⁴)	Expected (ZV) (TeV ⁻⁴)
f_{S0}/Λ^4	[-4.2, 4.2]	[-40, 40]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-5.2, 5.2]	[-32, 32]	[-24, 24]

95% C.L. limits for $\sqrt{s} = 13$ TeV, 35.9 ${
m fb}^{-1}$

[Phys. Lett. B 798 (2019)134985 (CMS)]

Our computation of unitarity effects at pp collisions

- 1.- Unitarization applied to VBS subprocess amplitude $\Rightarrow \sigma(pp \rightarrow WZjj)$ computed with a Python code using the Effective W Approximation That is by means of a factorization connecting the subprocess with the process.
- 2.- Then we check the goodness of the EWA by comparing with full MG5 $pp \rightarrow WZjj$ events (VBS+others). Both in SM and EChL.
- 3.- We compare our predicted $\sigma^{\text{EWA}}(pp \rightarrow WZjj)$ for a given unitarization method with LHC data in the (a_4, a_5) plane.
- 4.- VBS events usually selected by specific VBS-cuts: large pseudorapidity gap and large invariant mass (like $\Delta \eta_{jj} > 4$ and $M_{jj} > 500$ GeV).

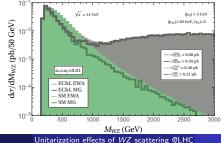


Effective W Approximation (EWA)

- W's and Z's considered as partons inside the proton. Generalization of the Weiszäcker-Williams approximation for photons.
- They are emitted collinearly from the fermions (quarks) with probability functions $f_V(\hat{x})$ and then scatter on-shell.
- Factorization using a sort of PDFs

$$\begin{aligned} \sigma(pp \to (V_1 V_2 \to V_3 V_4) + X) &= \\ \sum_{i,j} \int \int dx_1 dx_2 f_{q_i}(x_1) f_{q_j}(x_2) \int \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 \to V_3 V_4) \end{aligned}$$

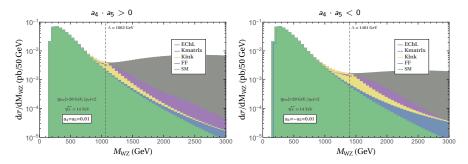
• We have tested with MG5 the accuracy of various probability functions (SM and EChL): Dawson's Improved formulas work best!



[Nucl. Phys. B249 (1985) 42]

Predictions with different unitarization methods at LHC

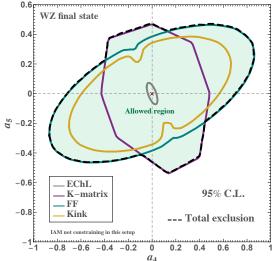
- Different results depending on unitarization method also at the LHC.
- Both distributions and cross sections result to be different.



SS a_4 and a_5 from non-unitarized EChL is more constrained than OS.

Our results: parameter uncertainty in (a_4, a_5) plane

- We focus on WZ ATLAS analysis at Run 1, $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹.
- From the ATLAS 'ellipse' (contour at 95% C.L.) for K-matrix we extract our equivalent cross section.
- For the other unitarization methods, we construct the contours at 95% C.L.
 Main assumption: selection cuts affect equaly all predictions.
- No unitarization gives strong constraints (small ellipse).
 a₄.a₅ > 0 more constrained.
- Overlap corresponds to the uncertainty in (a4, a5)
- Shape and orientation change from one unitarization method to another.
 Size enhances by a factor 10 approx the uncertainty respect non-unitarized constraints.



Roberto A. Morales

Unitarization effects of WZ scattering @LHC

- EFT is a powerful tool to study New Physics in a model-independent way.
- EChL is the most general EFT suitable for strongly interacting scenarios of EWSB. This EFT approach might lead to event predictions that violate unitarity.
- VBS is the key observable of this kind of physics.
- Unitarization methods must be applied in order to provide unitary predictions:
 - \Rightarrow different unitarization procedures lead to different predictions for VBS.
 - \Rightarrow a theoretical uncertainty is associated with this ambiguity.
- We provide a first approximation to quantify this uncertainty in the experimental determination of (a_4, a_5) due to the unitarization scheme choice through the elastic *WZ* scattering at the LHC.

Backup slides

Transformations under $SU(2)_L \times SU(2)_R$

The rotations under $SU(2)_L$ and $SU(2)_R$ correspond to $g_L = e^{i\vec{\tau}\cdot\vec{\alpha}_L/2}$ and $g_R = e^{i\vec{\tau}\cdot\vec{\alpha}_R/2}$

Then building blocks transform under the global $SU(2)_L \times SU(2)_R$ as $U \mapsto U' = g_L U g_R^{\dagger}$ with chiral dim. = 0 $\hat{B}_{\mu} \mapsto \hat{B}'_{\mu} = \hat{B}_{\mu}$ with chiral dim. = 1 $\hat{W}_{\mu} \mapsto \hat{W}'_{\mu} = g_L \hat{W}_{\mu} g_L^{\dagger}$ with chiral dim. = 1 $D_{\mu}U \mapsto (D_{\mu}U)' = g_L D_{\mu}U g_R^{\dagger}$ with chiral dim. = 1 $\hat{B}_{\mu\nu} \mapsto \hat{B}'_{\mu\nu} = \hat{B}_{\mu\nu}$ with chiral dim. = 2 $\hat{W}_{\mu\nu} \mapsto \hat{W}'_{\mu\nu} = g_L \hat{W}_{\mu\nu} g_L^{\dagger}$ with chiral dim. = 2

For the EW gauge symmetry $SU(2)_L \times U(1)_Y \subset SU(2)_L \times SU(2)_R$, the association of the generator of $U(1)_Y$ as the third one of the $SU(2)_R$ and the generator of $U(1)_{EM}$ as the third one of the $SU(2)_{L+R}$:

$$Y \leftrightarrow X_R^3$$
 and $Q \leftrightarrow X_{L+R}^3 = T^3 + Y$

Unitarized amplitudes

The partial wave decomposition is

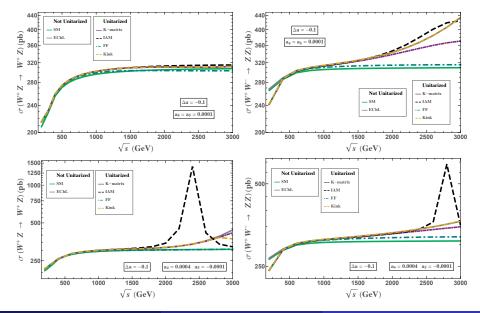
$$a^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s) = rac{1}{32\pi}\int_{-1}^1 d\cos heta\; A(V_{\lambda_1}V_{\lambda_2}
ightarrow V_{\lambda_3}V_{\lambda_4})(s,\cos heta)\, d^J_{\lambda,\lambda'}(\cos heta)$$

where J is the total angular momentum of the system, $\lambda = \lambda_1 - \lambda_2$, $\lambda' = \lambda_3 - \lambda_4$, being λ_i the helicity states of the external gauge bosons, and where $d_{\lambda,\lambda'}^J(\cos\theta)$ are the Wigner functions.

For the K-matrix and IAM methods, the unitarized amplitude is reconstructed from the corresponding unitarized partial wave and the non-unitary amplitudes following:

$$\begin{split} \hat{A}_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) &= A_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) \\ &- 16\pi \sum_{J=0}^2 (2J+1) \, d^J_{\lambda,\lambda'}(\cos\theta) \, a^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s) \\ &+ 16\pi \sum_{J=0}^2 (2J+1) \, d^J_{\lambda,\lambda'}(\cos\theta) \, \hat{\mathbf{a}}^J_{[\lambda_1\lambda_2\lambda_3\lambda_4]}(s) \end{split}$$

Dynamical resonances in the IAM



Roberto A. Morales

Unitarization effects of WZ scattering @LHC

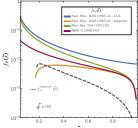
More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved (yellow line)

$$\begin{split} f_{V_T}^{Improved}(x) &= \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[\frac{-x^2}{1 + M_V^2 / (4E^2(1-x))} + \frac{2x^2(1-x)}{M_V^2 / E^2 - x^2} + \left\{ x^2 + \frac{x^4(1-x)}{(M_V^2 / E^2 - x^2)^2} \left(2 + \frac{M_V^2}{E^2(1-x)} \right) - \frac{x^2}{(M_V^2 / E^2 - x^2)^2} \frac{M_V^4}{2E^4} \right\} \log \left(1 + \frac{4E^2(1-x)}{M_V^2} \right) + x^4 \left(\frac{2-x}{M_V^2 / E^2 - x^2} \right)^2 \log \frac{x}{2-x} \right] \eta \end{split}$$

$$f_{V_L}^{Improved}(x) = \frac{C_V^2 + C_A^2}{\pi^2} \frac{1 - x}{x} \frac{\eta}{(1 + \eta)^2} \left\{ \frac{1 - x - M_V^2/(8E^2)}{1 - x + M_V^2/(4E^2)} - \frac{M_V^2}{4E^2} \frac{1 + 2(1 - x)^2}{1 - x + M_V^2/(4E^2)} \frac{1}{M_V^2/E^2 - x^2} - \frac{M_V^2}{4E^2} \frac{x^2}{2(1 - x)(x^2 - M_V^2/E^2)^2} \left[(2 - x)^2 \log \frac{x}{2 - x} - \left(\left(x - \frac{M_V^2}{E^2x} \right)^2 - (2(1 - x) + x^2) \right) \log \left(1 + \frac{4E^2(1 - x)}{M_V^2} \right) \right] - \frac{M_V^2}{8E^2} \frac{x}{\sqrt{x^2 - M_V^2/E^2}} \left[\frac{2}{x^2 - M_V^2/E^2} + \frac{1}{1 - x} \right] \left[\log \frac{2 - x - \sqrt{x^2 - M_V^2/E^2}}{2 - x + \sqrt{x^2 - M_V^2/E^2}} - \log \frac{x - \sqrt{x^2 - M_V^2/E^2}}{x + \sqrt{x^2 - M_V^2/E^2}} \right] \right\}$$
with $C_{V(A)}$ the vector(axial) couplings Vqq , x the fraction of quark energy E carried by V and $\eta \equiv \left(1 - \frac{M_V^2}{x^2E^2} \right)^{1/2}$

In the limit $M_V \ll E \Rightarrow$ $f_{V_T}^{LLA}(x) = \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[x^2 + 2(1-x) \right] \log \left(\frac{4E^2}{M_V^2} \right)$ $f_{V_L}^{LLA}(x) = \frac{C_V^2 + C_A^2}{\pi^2} \frac{1-x}{x}$



Unitarization effects of WZ scattering @LHC