QCD Corrections in SMEFT Fits to WZ and WW Production

VBSCan Working Group 1 meeting December 2nd, 2019

Julien Baglio

[in collaboration with Sally Dawson and Sam Homiller, arXiv:1909.11576]

Goal: parametrize effects of high-scale new physics

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i} + \mathcal{O}\left(rac{1}{\Lambda^{4}}
ight)$$

- Gauge theory $SU(3)_c \times SU(2)_L \times U(1)_Y$ assumed
- SMEFT: Higgs field is an SU(2) doublet
- New physics scale Λ, effective higher-dimensional operators
 O_i built with SM fields
- Dimension-5 operator violating lepton number not considered in this talk

How large can the coefficients C_i/Λ^2 be?

- Use W^+W^- and $W^{\pm}Z$ channels to fit the Wilson coefficients
- Usual fits use lowest order cross section: Do NLO (QCD) corrections matter?

Can easily map any EFT basis¹ over the anomalous couplings \Rightarrow use now anomalous coupling language

For the triple gauge boson couplings:

$$\mathcal{L}_{WWZ} \propto \left[\left(1 + \delta g_{1}^{Z} \right) \left(W_{\mu\nu}^{+} W^{-\mu} Z^{\nu} - W_{\mu\nu}^{-} W^{+\mu} Z^{\nu} \right) + \left(1 + \delta \kappa^{Z} \right) W_{\mu}^{+} W_{\nu}^{-} Z^{\mu\nu} + \frac{\lambda^{Z}}{M_{W}^{2}} W_{\rho\mu}^{+} W^{-\mu\nu} Z^{\nu\rho} \right], \\ \mathcal{L}_{WW\gamma} \propto \left[\left(W_{\mu\nu}^{+} W^{-\mu} A^{\nu} - W_{\mu\nu}^{-} W^{+\mu} A^{\nu} \right) + \left(1 + \delta \kappa^{\gamma} \right) W_{\mu}^{+} W_{\nu}^{-} A^{\mu\nu} + \frac{\lambda^{\gamma}}{M_{W}^{2}} W_{\rho\mu}^{+} W^{-\mu\nu} A^{\nu\rho} \right]$$

5 new parameters

• With SU(2) invariance: $\lambda^{\gamma} = \lambda^{Z}$, $\delta \kappa^{\gamma} = \frac{\cos^{2} \theta_{W}}{\sin^{2} \theta_{W}} \left(\delta g_{1}^{Z} - \delta \kappa^{Z} \right)$

\Rightarrow 3 independent parameters in the gauge sector

¹See e.g. [J.B., Dawson, Lewis, PRD 96 (2017) 073003, arXiv:1708.03332]

Effective Z - q - q and W - q - q' couplings can be important!

[see e.g. Zhang, PRL 118 (2017) 011803, arXiv:1610.01618]

$$egin{aligned} \mathcal{L}_{Zqq} &\propto Z_{\mu} \Big[(m{g}_L^{Zm{u}} + \deltam{g}_L^{Zm{u}})ar{m{u}}_L \gamma^{\mu}m{u}_L + (m{g}_R^{Zm{u}} + \deltam{g}_R^{Zm{u}})ar{m{u}}_R \gamma^{\mu}m{u}_R \ &+ (m{g}_L^{Zm{d}} + \deltam{g}_L^{Zm{d}})ar{m{d}}_L \gamma^{\mu}m{d}_L + (m{g}_R^{Zm{d}} + \deltam{g}_R^{Zm{d}})ar{m{d}}_R \gamma^{\mu}m{d}_R \Big], \ &+ (m{g}_L^{Zm{d}} + \deltam{g}_R^{Zm{d}})ar{m{d}}_R \gamma^{\mu}m{d}_R \Big], \ &+ (m{g}_L^{Zm{d}} + \deltam{g}_R^{Zm{d}})ar{m{d}}_R \gamma^{\mu}m{d}_R \Big], \end{aligned}$$

With SU(2) invariance:
 \$\delta g_L^{Wq} = \delta g_L^{Zu} - \delta g_L^{Zd}
 \$\delta g_L^{Tu} - \delta g_L^{Zd}\$
 \$\delta g_L^{Tu} - \delta g_L^{Tu} - \delta g_L^{Tu}
 \$\delta g_L^{

Implementation of the leptonic processes $pp \rightarrow W^+W^- \rightarrow e^{\pm}\mu^{\mp} + 2\nu$ and $pp \rightarrow W^{\pm}Z \rightarrow e^{\pm}\nu\mu^+\mu^-$ at NLO QCD

- Full 2 → 4 matrix elements with single resonant diagrams taken into account [Dixon, Kunszt, Signer, NPB 531 (1998) 3, hep-ph/9803250; PRD 60 (1999) 114037, hep-ph/9907305]
- Anomalous gauge couplings [Melia *et al*, JHEP 11 (2011) 078, arXiv:1107.5051; Nason, Zanderighi, EPJC 74 (2014) 2702, arXiv:1311.1365] and fermionic coupling (new)
- QCD corrections are straightforward: unaffected by anomalous EW couplings, just adapt the individual Born, virtual, real pieces to the anomalous couplings irrespective of QCD
- Fully differential calculation with arbitrary cuts

W^+W^- and $W^{\pm}Z$ implemented in the POWHEG-BOX

[Nason, JHEP 11 (2004) 040, hep-ph/0409146; Frixione, Nason, Oleari, JHEP 11 (2007) 070, arXiv:0709.2092; Alioli *et al*, JHEP 06 (2010) 043, arXiv:1002.2581]

Subtraction of IR divergences in the FKS scheme [Frixione, Kunszt, Signer,

NPB 467 (1996) 399, hep-ph/9512328]

- Matching of the NLO QCD corrections to parton shower
- $6 \neq EW$ input parameter schemes implemented
- Consistent $\mathcal{O}(1/\Lambda^{2n})$ expansion implemented
- Choice between anomalous couplings or dim-6 EFT Wilson coefficients in the Warsaw basis
- Our implementation publically available in the POWHEG-BOX-V2, projects WWanomal and WZanomal

Visit http://powhegbox.mib.infn.it/ to download the code!

QCD corrections: W^+W^-

QCD corrections quite similar in SM and SMEFT

7/17 | J. Baglio

QCD Corrections in SMEFT Fits to WZ and WW Production

VBSCan WG1 meeting, 02/12/2019

Same for $pp \rightarrow W^{\pm}Z \rightarrow e^{\pm}\nu\mu^{+}\mu^{-}$:

- Benchmark scenarios 3GB = only gauge operators; Ferm = only fermion operators
- QCD corrections very different in the high-energy bins! ⇒ can't approximate SMEFT QCD effects with SM K-factors anymore

χ^2 fit with the following sets of data:

Channel	Distribution	# bins	Data set	Int. Lum.
$WW ightarrow \ell^+ \ell'^- + \not\!$	$p_T^{ ext{leading }\ell}$	1	ATLAS 8 TeV ²	20.3 fb ⁻¹
$WW ightarrow e^{\pm} \mu^{\mp} + E_T (0j)$	$oldsymbol{p}_{\mathcal{T}}^{ ext{leading }\ell}$	5	ATLAS 13 TeV ³	36.1 fb ⁻¹
$W\!Z ightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$	m_T^{WZ}	2	ATLAS 8 TeV ⁴	20.3 fb ⁻¹
$WZ \rightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not\!\!\!E_T$	Z candidate $p_T^{\ell\ell}$	9	CMS 8 TeV ⁵	19.6 fb ⁻¹
$W\!Z ightarrow \ell^+ \ell^- \ell^{(\prime)\pm}$	m_T^{WZ}	6	ATLAS 13 TeV ⁶	36.1 fb ⁻¹
$WZ ightarrow \ell^+ \ell^- \ell^{(\prime)\pm} + \not\!$	m ^{WZ}	3	CMS 13 TeV ⁷	35.9 fb ⁻¹

²[ATLAS, JHEP 09 (2016) 029, arXiv:1603.01702] ³[ATLAS, EPJC 79 (2019) 884, arXiv:1905.04242]

⁴[ATLAS, PRD 93 (2016) 092004, arXiv:1603.02151]

5[CMS, EPJC 77 (2017) 236, arXiv:1609.05721]

6[ATLAS, EPJC 79 (2019) 535, arXiv:1902.05759]

7[CMS, JHEP 04 (2019) 122, arXiv:1901.03428]

Calculation of a set of 35 primitive differential xs for W^+W^- and 15 differential xs for $W^{\pm}Z$, at a given QCD order

[see J.B., Dawson, Lewis, PRD 99 (2019) 035039, arXiv:1812.00214]

$$d\sigma(\vec{C}) = d\sigma_{SM} \left(1 - \sum_{i=1}^{m} C_i \right) + \sum_{i=1}^{m} C_i d\sigma(1; \vec{R}_i) + \sum_{i=1}^{m} C_i^2 \left(d\sigma(2; \vec{R}_i) - d\sigma(1; \vec{R}_i) \right) + \sum_{i>j=1}^{m} C_i C_j \left(d\sigma(2; \vec{M}_{ij}) - d\sigma(2; \vec{R}_i) - d\sigma(2; \vec{R}_j) + d\sigma_{SM} \right)$$

- Formula at order $\mathcal{O}(1/\Lambda^4)$ for a set of *m* Wilson coefficients $\vec{C} = (C_i)_{i=1...m}$
- Primitive $d\sigma(n; \vec{R}_i)$ is $d\sigma$ at order $\mathcal{O}(1/\Lambda^{2n})$ with $C_i = 1, C_j = 0 (j \neq i)$
- Primitive $d\sigma(2; \vec{M}_{ij})$ is $d\sigma$ at order $\mathcal{O}(1/\Lambda^4)$ with $C_i = 1, C_j = 1, C_k = 0 \ (k \neq i, k \neq j)$

Can compute in a fast way any bin with arbitrary anomalous couplings

- $\delta \kappa^Z$ constrained at the same level as the other anomalous couplings

NLO QCD effects visible (amplitude 0 spoiled)

• Subleading dependence of $W^{\pm}Z$ on $\delta \kappa^{Z}$ at high energies \Rightarrow fit dominated by $W^{+}W^{-}$ data \Rightarrow LO and NLO results similar

Same NLO QCD effects in profiled fits:

• Correlation between δg_L^{Zu} and δg_L^{Zd} removed at NLO

Limits much weaker when fermion operators taken into account! [see also Zhang, PRL 118 (2017) 011803, arXiv:1610.01618; J.B., Dawson, Lewis, PRD 99 (2019) 035029,

arXiv:1812.00214 ; Butter et al, JHEP 07 (2016) 152, arXiv:1604.03105]

- 0

- 0

$$\begin{aligned} & \mathsf{EFT} \ \mathsf{Lagrangian:} \quad \mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{C_{i}^{\mathsf{o}}}{\Lambda^{2}} \mathcal{O}_{i}^{\mathsf{6}} + \sum_{i} \frac{C_{i}^{\mathsf{o}}}{\Lambda^{4}} \mathcal{O}_{i}^{\mathsf{8}} + \dots \\ & \Rightarrow \sigma \propto \frac{1}{s} \left\{ |\mathcal{A}_{SM}|^{2} + \frac{2}{\Lambda^{2}} \operatorname{Re} \left(\mathcal{A}_{SM}^{*} \delta \mathcal{A}_{EFT}^{(\mathsf{6})} \right) + \frac{|\delta \mathcal{A}_{EFT}^{(\mathsf{6})}|^{2}}{\Lambda^{4}} + \frac{2}{\Lambda^{4}} \operatorname{Re} \left(\mathcal{A}_{SM}^{*} \delta \mathcal{A}_{EFT}^{(\mathsf{8})} \right) + \dots \right\} \end{aligned}$$

- Assume dim-8 operators subleading \Rightarrow safely include $|\delta A_{EFT}^{(6)}|^2 / \Lambda^4$
- What impact of the dim-6 squared terms? Truncation at the linear term in the EFT expansion
- Cross section not positive definite anymore ⇒ throw away points in the fits where cross section negative

- Excluded at LO, Excluded at NLO, Excluded at LO+NLO
- Huge impact of $1/\Lambda^4$ terms \Rightarrow not (yet) sensitive to weak anomalous couplings

Important point: EFT valid only for $E \ll \Lambda$

[see e.g. Contino et al, JHEP 07 (2016) 144, arXiv:1604.06444; Farina et al, PLB 772 (2017) 210, arXiv:1609.08157]

What happens when last bin in data removed? $(m_{\tau}^{WZ} > 600 \text{ GeV} \Rightarrow \text{all points satisfy } m_{\tau}^{WZ} < \Lambda = 1 \text{ TeV})$ 0.200.40 0.15----- LO ----- LO 0.30 95% C.L. Limit on $\delta \kappa^Z$ C.L. Limit on δg_1^Z – NLO – NLO 0.10 0.20 0.05 0.10 0.00 0.00 -0.10-0.05 $\sqrt{s} = 13 \,\text{TeV}$ $\sqrt{s} = 13 \,\text{TeV}$ -0.2095%-0.10 $\mu_R = \mu_F = M_Z/2$ $\mu_R = \mu_F = M_Z/2$ -0.30ATLAS Cuts ATLAS Cuts -0.15-0.40-0.20-0.50600 200400 800 1000 200400 600 800 1000 0 m_T^{WZ} Cut (GeV) m_T^{WZ} Cut (GeV)

- \blacksquare Fit still the same within $\sim 10\%$
- Would be great to have the overflow bin explicitly singled out max energy in the last bin clearer!

- SMEFT at NLO QCD in W⁺W⁻ and W[±]Z leptonic channels available, including quarks and gauge operators
- Results dominated by $1/\Lambda^4$ terms \Rightarrow not yet sensitive to weak coupling regime
- Not including last bin gives good results ⇒ Would be great to know the max energy in the data
- Code released publically in the POWHEG-BOX

\Rightarrow anyone can use it!

$\mathcal{O}_{\ell\ell}$	$(\overline{\ell}_L \gamma^\mu \ell_L) (\overline{\ell}_L \gamma_\mu \ell_L)$	\mathcal{O}_{HWB}	$(\Phi^{\dagger}\sigma^{a}\Phi)W^{a}_{\mu u}B^{\mu u}$	\mathcal{O}_{HD}	$\left \Phi^{\dagger}(\textit{D}_{\mu}\Phi) ight ^2$
\mathcal{O}_{3W}	$\epsilon^{m{a}m{b}m{c}}m{W}_{\!\mu}^{m{a} u}m{W}_{\! u}^{m{b} ho}m{W}_{\! u}^{m{c}\mu}$	${\cal O}_{HF}^{(3)}$	$i\left(\Phi^{\dagger}\overleftrightarrow{D}_{\mu}^{a}\Phi\right)\overline{f}_{L}\gamma^{\mu}\sigma^{a}f_{L}$	$\mathcal{O}_{HF}^{(1)}$	$i\left(\Phi^{\dagger}\overleftarrow{D}_{\mu}\Phi\right)\overline{f}_{L}\gamma^{\mu}f_{L}$
\mathcal{O}_{Hu}	$i\left(\Phi^{\dagger}\overleftarrow{D}_{\mu}\Phi\right)\overline{u}_{R}\gamma^{\mu}u_{R}$	\mathcal{O}_{Hd}	$i\left(\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi\right)\overline{d}_{R}\gamma^{\mu}d_{R}$		

With [Falkowski, arXiv:1505.00046; Brivio, Trott, JHEP 07 (2017) 148, arXiv:1701.06424]

$$\delta v = C_{HI}^{(3)} - \frac{1}{2}C_{II}, \quad \delta g_{Z} = -\frac{v^{2}}{\Lambda^{2}}\left(\delta v + \frac{1}{4}C_{HD}\right), \quad \delta s_{W}^{2} = -\frac{v^{2}}{\Lambda^{2}}\frac{s_{W}c_{W}}{c_{W}^{2} - s_{W}^{2}}\left[2s_{W}c_{W}\left(\delta v + \frac{1}{4}C_{HD}\right) + C_{HWB}\right],$$

We get ⁸

$$\begin{split} \delta g_{1}^{Z} &= \frac{v^{2}}{\Lambda^{2}} \frac{1}{c_{W}^{2} - s_{W}^{2}} \left(\frac{s_{W}}{c_{W}} C_{HWB} + \frac{1}{4} C_{HD} + \delta v \right), \quad \delta \kappa^{Z} = \frac{v^{2}}{\Lambda^{2}} \frac{1}{c_{W}^{2} - s_{W}^{2}} \left(2s_{W} c_{W} C_{HWB} + \frac{1}{4} C_{HD} + \delta v \right), \\ \delta \kappa^{\gamma} &= -\frac{v^{2}}{\Lambda^{2}} \frac{c_{W}}{s_{W}} C_{HWB}, \quad \lambda^{\gamma} = \frac{v}{\Lambda^{2}} 3M_{W} C_{3W}, \quad \lambda^{Z} = \frac{v}{\Lambda^{2}} 3M_{W} C_{3W}, \\ \delta g_{L}^{W} &= \frac{v^{2}}{\Lambda^{2}} C_{Hq}^{(3)} + c_{W}^{2} \delta g_{Z} + \delta s_{W}^{2}, \\ \delta g_{L}^{Zu} &= -\frac{v^{2}}{2\Lambda^{2}} \left(C_{Hq}^{(1)} - C_{Hq}^{(3)} \right) + \frac{1}{2} \delta g_{Z} + \frac{2}{3} \left(\delta s_{W}^{2} - s_{W}^{2} \delta g_{Z} \right), \\ \delta g_{L}^{Zd} &= -\frac{v^{2}}{2\Lambda^{2}} \left(C_{Hq}^{(1)} + C_{Hq}^{(3)} \right) - \frac{1}{2} \delta g_{Z} - \frac{1}{3} \left(\delta s_{W}^{2} - s_{W}^{2} \delta g_{Z} \right), \\ \delta g_{R}^{Zu} &= -\frac{v^{2}}{2\Lambda^{2}} C_{Hu} + \frac{2}{3} \left(\delta s_{W}^{2} - s_{W}^{2} \delta g_{Z} \right), \quad \delta g_{R}^{Zd} = -\frac{v^{2}}{2\Lambda^{2}} C_{Hu} - \frac{1}{3} \left(\delta s_{W}^{2} - s_{W}^{2} \delta g_{Z} \right) \end{split}$$

⁸[Berthier, Trott, JHEP 05 (2015) 024, arXiv:1502.02570; Zhang, PRL 118 (2017) 011803, arXiv:1610.01618; J.B., Dawson, Lewis, PRD 96 (2017) 073003, arXiv:1708.03332]

Fits to $W^{\pm}Z$ alone

17/17 | J. Baglio

QCD Corrections in SMEFT Fits to WZ and WW Production

VBSCan WG1 meeting, 02/12/2019

With $\overline{q}_s q_{s'} \to W_{\lambda}^+ W_{\lambda'}^-$, θ between beam axis and gauge boson direction in the cms system:

$$\begin{split} \delta \mathcal{A}_{+-00} &\to \frac{g^2}{2} \sin \theta \left(\frac{s}{M_W^2} \right) \left\{ \delta \kappa^Z \left(s_W^2 Q_q - T_3^q \right) - s_W^2 Q_q \delta \kappa^\gamma - \delta g_L^{Zq} + 2 T_3^q \delta g_L^W \right\}, \\ \delta \mathcal{A}_{-+00} &\to \frac{g^2}{2} \sin \theta \left(\frac{s}{M_W^2} \right) \left\{ s_W^2 Q_q \left(\delta \kappa^\gamma - \delta \kappa^Z \right) + \delta g_R^{Zq} \right\}, \\ \delta \mathcal{A}_{+-\pm\pm} &\to -\frac{g^2}{2} \sin \theta \left(\frac{s}{M_W^2} \right) \lambda^Z T_3^q \end{split}$$

With $\overline{q}_+q_- \rightarrow W_{\lambda}^+Z_{\lambda'}$, θ between beam axis and gauge boson direction in the cms system:

$$\begin{split} \delta \mathcal{A}_{00} &\to \frac{g^2}{2\sqrt{2}} \sin \theta \left(\frac{s}{M_Z^2}\right) \left\{ \delta g_1^Z + \frac{\left(\delta g_L^{Zd} - \delta g_L^{Zu}\right)}{c_W^2} \right\}, \\ \delta \mathcal{A}_{\pm\pm} &\to \frac{g^2}{2\sqrt{2}c_W} \sin \theta \left(\frac{s}{M_Z^2}\right) \lambda_Z, \\ \delta \mathcal{A}_{\pm,\mp} &\to -\frac{g^2}{\sqrt{2}c_W} \sin \theta \left\{ \delta g_L^{Zu} \tan^2 \left(\frac{\theta}{2}\right) + \delta g_L^{Zd} \right\} \end{split}$$