

Offline and online calibration algorithms for the RD53A ROC

Malte Backhaus, Franz Glessgen, Vasilije Perovic, Branislav Ristic, Daniele Ruini

Introduction

- Comparison between calibration algorithms
- → New feature of the RD53A chip: trickle configuration
- Development of an online tuning method (in software) following ideas of Timon Heim and Maurice Garcia-Sciveres from LBNL

Offline calibration

The threshold scan algorithm (TSA)

- → Binary search for optimal TDAC mask
- → At each step: N injections over charge range → S-curves are computed
- → The mean threshold is calculated and the TDAC shifted for individual pixels to bring their threshold closer to the mean.

The occupancy scan algorithm (OSA)

- → Similar structure as TSA but with occupancy scans
- → Occupancy scans: N injections at a single charge (not over a range)
- ightharpoonup Occupancy higher than $\frac{1}{2} \to$ threshold is increased (decreased otherwise).
- Much faster than TSA.

Results at high threshold

- \rightarrow OSA and TSA equivalent at high thresholds (> 1500 electrons): similar σ and tails.
- → OSA is 4 times faster.

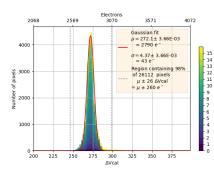


Figure: Threshold distribution for the TSA (left) and the OSA (right)

- TSA and OSA give gaussian distributions
- → Difference of these distribution should be a gaussian of mean 0 and $\sigma_{diff} = \sqrt{2}\sigma$
- → Figure shows good results from 1500 electrons.

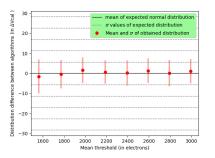


Figure: Mean and σ of the distribution of the pixel by pixel difference in threshold between TSA and OSA outcome as a function of the mean threshold.

- → TDAC distribution is very similar for both algorithms
- → Correlation plot of TDAC distributions → 77% of pixels have same TDAC values after either one.
- → Only 0.4% get significantly different TDAC values (at a threshold of 2500).

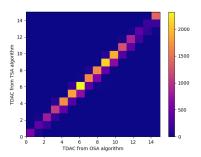


Figure: Scatter plot of individual pixels' TDAC after the TSA against their TDAC after the OSA.

Influence of noise

- → Failing pixels → S-curve cannot be computed because of noise hits.
- → Calibration before decreasing the mean threshold is needed.

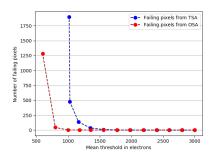


Figure: Number of failing pixels as a function of the final mean threshold for the TSA and OSA.

Online calibration

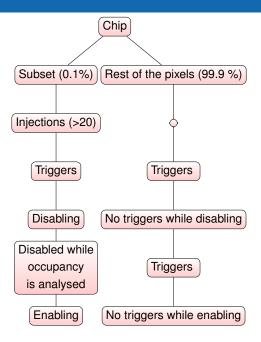
Software implementation based on the ideas of T. Heim's and M. Garcia-Sciveres paper ¹

¹T. Heim and M. Garcia-Sciveres. Self-adjusting threshold mechanism for pixel detectors.

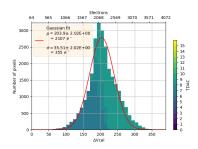
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 867:209–214, 2017

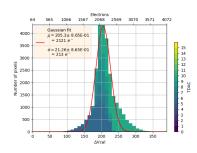
Motivation

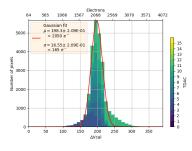
- → SEU negating the spatial calibration
- → Trickle configuration: chip receives its settings regularly to mitigate SEU. New feature of RD53A.
- → TID → threshold shift even with trickle configuration
- → Solution: calibrate the chip during data taking (trickle tuning)

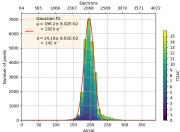

- → Principle of the method: regularly inject a specific charge into a small subset of the pixels and update their TDAC according to their occupancy
- → How can it work?
 - → Occupancy calibration works
 - ightharpoonup Low occupancy (\approx 0.1 %) for the pixels at CMS ightharpoonup low probability of physics hit while analysing occupancy

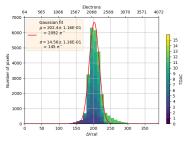
A BDAQ53 feature

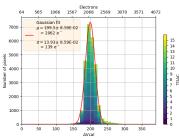

- → Version 0.11 of BDAQ: functionality for quick online data retrieval.
- → Threading process → adds raw data to a queue for occupancy histogramming.
- → Can be called during data taking.




Calibration results


- Online method applied to the whole LFE.
- → 0.25% of the 26112 pixels injected at each calibration step.
- → 15 calibration steps. *n*-th calibration step corresponds to
 - → n updates of the TDAC of each pixel
 - → $400 \times 31000 \times n$ triggers sent to every pixel





→ Convergence in 7 whole matrix iterations and stable.

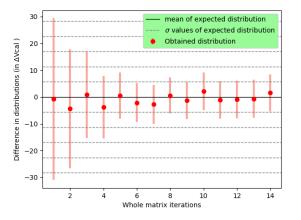


Figure: Mean and σ of the pixel by pixel difference in threshold between ideal and obtained distributions.

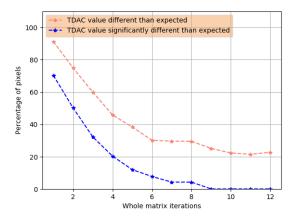


Figure: TDAC convergence w.r.t whole matrix iterations

Averaging

- → After optimal calibration is reached, pixels in tails of threshold distribution still have high occupancies → continously get shifted.
- → To measure this: *N* = 150 updates of the TDAC of each pixel starting from a calibrated distribution.
- → Plot of u + d as a function of the distance to the mean threshold of the pixels (u (resp. d) = number of times the TDAC of a pixel has been shifted upward (resp. downward)).

- ightharpoonup 90 % of the pixels satisfy $|u-d| \le 1$, only those are considered.
- → Clear increase with distance to mean threshold.

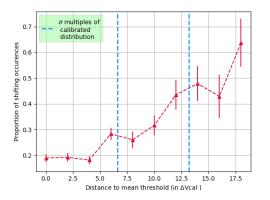
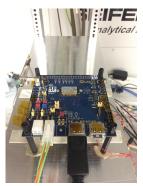
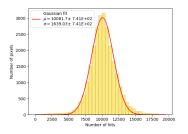



Figure: Mean of $\frac{u+d}{N}$ as a function of the distance to the mean threshold of the pixels

Testing in X-ray chamber


ightharpoonup X-ray tube with Cr anode operated at 10 kV and 18 mA: mean hit probability per trigger of a pixel $\approx 2 \times 10^{-4}$

- → From a calibrated distribution: same measurement with and without trickle tuning.
- → Same number of triggers: 62 × 10⁶ over 2800 seconds, 0.4% of the pixels injected.

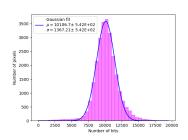


Figure: Detected hits for the regular scheme (left) and the online method (right)

- Consistent means (p-value of 14% to Student's test)
- → Averaging phenomenon leads to a thinner effective distribution (Levene's and Bartlett's test for statistical decision)

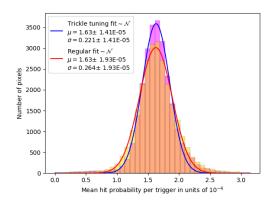


Figure: Hit probability per trigger with (purple) and without (orange) trickle tuning

Summary and conclusions

- → Implementation of a new offline calibration algorithm:
 - → Fast and efficient at high threshold (> 1500 electrons)
 - → Slight modification to obtain usable TD at low threshold (< 1000 electrons)</p>
- → Software implementation of a method for trickle tuning:
 - → Using occupancy analysis of chosen pixels
 - Quick convergence towards calibrated distribution
 - Stable over many iterations
 - Leads to averaging phenomenon
- Code available on this git: Link
- → Work in progress!!

